11 resultados para reproductive and productive educational-cognitive activity
em AMS Tesi di Dottorato - Alm@DL - Universit
Resumo:
The research activity characterizing the present thesis was mainly centered on the design, development and validation of methodologies for the estimation of stationary and time-varying connectivity between different regions of the human brain during specific complex cognitive tasks. Such activity involved two main aspects: i) the development of a stable, consistent and reproducible procedure for functional connectivity estimation with a high impact on neuroscience field and ii) its application to real data from healthy volunteers eliciting specific cognitive processes (attention and memory). In particular the methodological issues addressed in the present thesis consisted in finding out an approach to be applied in neuroscience field able to: i) include all the cerebral sources in connectivity estimation process; ii) to accurately describe the temporal evolution of connectivity networks; iii) to assess the significance of connectivity patterns; iv) to consistently describe relevant properties of brain networks. The advancement provided in this thesis allowed finding out quantifiable descriptors of cognitive processes during a high resolution EEG experiment involving subjects performing complex cognitive tasks.
Resumo:
Neuronal networks exhibit diverse types of plasticity, including the activity-dependent regulation of synaptic functions and refinement of synaptic connections. In addition, continuous generation of new neurons in the “adult” brain (adult neurogenesis) represents a powerful form of structural plasticity establishing new connections and possibly implementing pre-existing neuronal circuits (Kempermann et al, 2000; Ming and Song, 2005). Neurotrophins, a family of neuronal growth factors, are crucially involved in the modulation of activity-dependent neuronal plasticity. The first evidence for the physiological importance of this role evolved from the observations that the local administration of neurotrophins has dramatic effects on the activity-dependent refinement of synaptic connections in the visual cortex (McAllister et al, 1999; Berardi et al, 2000; Thoenen, 1995). Moreover, the local availability of critical amounts of neurotrophins appears to be relevant for the ability of hippocampal neurons to undergo long-term potentiation (LTP) of the synaptic transmission (Lu, 2004; Aicardi et al, 2004). To achieve a comprehensive understanding of the modulatory role of neurotrophins in integrated neuronal systems, informations on the mechanisms about local neurotrophins synthesis and secretion as well as ditribution of their cognate receptors are of crucial importance. In the first part of this doctoral thesis I have used electrophysiological approaches and real-time imaging tecniques to investigate additional features about the regulation of neurotrophins secretion, namely the capability of the neurotrophin brain-derived neurotrophic factor (BDNF) to undergo synaptic recycling. In cortical and hippocampal slices as well as in dissociated cell cultures, neuronal activity rapidly enhances the neuronal expression and secretion of BDNF which is subsequently taken up by neurons themselves but also by perineuronal astrocytes, through the selective activation of BDNF receptors. Moreover, internalized BDNF becomes part of the releasable source of the neurotrophin, which is promptly recruited for activity-dependent recycling. Thus, we described for the first time that neurons and astrocytes contain an endocytic compartment competent for BDNF recycling, suggesting a specialized form of bidirectional communication between neurons and glia. The mechanism of BDNF recycling is reminiscent of that for neurotransmitters and identifies BDNF as a new modulator implicated in neuro- and glio-transmission. In the second part of this doctoral thesis I addressed the role of BDNF signaling in adult hippocampal neurogenesis. I have generated a transgenic mouse model to specifically investigate the influence of BDNF signaling on the generation, differentiation, survival and connectivity of newborn neurons into the adult hippocampal network. I demonstrated that the survival of newborn neurons critically depends on the activation of the BDNF receptor TrkB. The TrkB-dependent decision regarding life or death in these newborn neurons takes place right at the transition point of their morphological and functional maturation Before newborn neurons start to die, they exhibit a drastic reduction in dendritic complexity and spine density compared to wild-type newborn neurons, indicating that this receptor is required for the connectivity of newborn neurons. Both the failure to become integrated and subsequent dying lead to impaired LTP. Finally, mice lacking a functional TrkB in the restricted population of newborn neurons show behavioral deficits, namely increased anxiety-like behavior. These data suggest that the integration and establishment of proper connections by newly generated neurons into the pre-existing network are relevant features for regulating the emotional state of the animal.
Resumo:
I studied the effects exerted by the modifications on structures and biological activities of the compounds so obtained. I prepared peptide analogues containing unusual amino acids such as halogenated, alkylated (S)- or (R)-tryptophans, useful for the synthesis of mimetics of the endogenous opioid peptide endomorphin-1, or 2-oxo-1,3-oxazolidine-4-carboxylic acids, utilized as pseudo-prolines having a clear all-trans configuration of the preceding peptide bond. The latter gave access to a series of constrained peptidomimetics with potential interest in medicinal chemistry and in the field of the foldamers. In particular, I have dedicated much efforts to the preparation of cyclopentapeptides containing D-configured, alfa-, or beta-aminoacids, and also of cyclotetrapeptides including the retro-inverso modification. The conformational analyses confirmed that these cyclic compounds can be utilized as rigid scaffolds mimicking gamma- or beta-turns, allowing to generate new molecular and 3D diversity. Much work has been dedicated to the structural analysis in solution and in the receptor-bound state, fundamental for giving a rationale to the experimentally determined bioactivity, as well as for predicting the activity of virtual compounds (in silico pre-screen). The conformational analyses in solution has been done mostly by NMR (2D gCosy, Roesy, VT, molecular dynamics, etc.). A special section is dedicated to the prediction of plausible poses of the ligands when bound to the receptors by Molecular Docking. This computational method proved to be a powerful tool for the investigation of ligand-receptor interactions, and for the design of selective agonists and antagonists. Another practical use of cyclic peptidomimetics was the synthesis and biological evaluation of cyclic analogues of endomorphin-1 lacking in a protonable amino group. The studies revealed that a inverse type II beta-turn on D-Trp-Phe constituted the bioactive conformation.
Resumo:
This thesis aimed to investigate the cognitive underpinnings of math skills, with particular reference to cognitive, and linguistic markers, core mechanisms of number processing and environmental variables. In particular, the issue of intergenerational transmission of math skills has been deepened, comparing parents’ and children’s basic and formal math abilities. This pattern of relationships amongst these has been considered in two different age ranges, preschool and primary school children. In the first chapter, a general introduction on mathematical skills is offered, with a description of some seminal works up to recent studies and latest findings. The first chapter concludes with a review of studies about the influence of environmental variables. In particular, a review of studies about home numeracy and intergenerational transmission is examined. The first study analyzed the relationship between mathematical skills of children attending primary school and those of their mothers. The objective of this study was to understand the influence of mothers' math abilities on those of their children. In the second study, the relationship between parents’ and children numerical processing has been examined in a sample of preschool children. The goal was to understand how mathematical skills of parents were relevant for the development of the numerical skills of children, taking into account children’s cognitive and linguistic skills as well as the role of home numeracy. The third study had the objective of investigating whether the verbal and nonverbal cognitive skills presumed to underlie arithmetic are also related to reading. Primary school children were administered measures of reading and arithmetic to understand the relationships between these two abilities and testing for possible shared cognitive markers. Finally, in the general discussion a summary of main findings across the study is presented, together with clinical and theoretical implications.
Resumo:
Glyphosate-based herbicides (GBHs) are the most globally used herbicides raising the risk of environmental exposition. Carcinogenic effects are only one component of the multiple adverse health effects of Glyphosate and GBHs that have been reported. Questions related to hazards and corresponding risks identified in relation to endocrine disrupting effects are rising. The present study investigated the possible reproductive/developmental toxicity of GBHs administered to male and female Sprague-Dawley rats under various calendar of treatment. Assessments included maternal and reproductive outcome of F0 and F1 dams exposed to GBHs throughout pregnancy and lactation and developmental landmarks and sexual characteristics of offspring. The study was designed in two stages. In the first stage Glyphosate, or its commercial formulation Roundup Bioflow, was administered to rats at the dose of 1.75 mg/kg bw/day (Glyphosate US Acceptable Daily Intake) from the prenatal period until adulthood. In the second stage, multiple toxicological parameters were simultaneously assessed, including multigeneration reproductive/developmental toxicity of Glyphosate and two GBHs (Roundup Bioflow and Ranger Pro). Man-equivalent doses, beginning from 0.5 mg/kg bw/day (ADI Europe) up to 50 mg/kg bw/day (NOAEL Glyphosate), were administered to male and female rats, covering specific windows of biological susceptibility. The results of stage 1 and preliminary data from stage 2 experiments characterize GBHs as probable endocrine disruptors as suggested by: 1) androgen-like effects of Roundup Bioflow, including a significant increase of anogenital distances in both males and females, delay of first estrous and increased testosterone in females; 2) slight puberty onset anticipation in the high dose of Ranger Pro group, observed in the F1 generation treated from in utero life until adulthood; 3) a delayed balano-preputial separation achievement in the high dose of Ranger Pro-treated males exposed only during the peri-pubertal period, indicating a direct and specific effect of GBHs depending on the timing of exposure.
Resumo:
Most cognitive functions require the encoding and routing of information across distributed networks of brain regions. Information propagation is typically attributed to physical connections existing between brain regions, and contributes to the formation of spatially correlated activity patterns, known as functional connectivity. While structural connectivity provides the anatomical foundation for neural interactions, the exact manner in which it shapes functional connectivity is complex and not yet fully understood. Additionally, traditional measures of directed functional connectivity only capture the overall correlation between neural activity, and provide no insight on the content of transmitted information, limiting their ability in understanding neural computations underlying the distributed processing of behaviorally-relevant variables. In this work, we first study the relationship between structural and functional connectivity in simulated recurrent spiking neural networks with spike timing dependent plasticity. We use established measures of time-lagged correlation and overall information propagation to infer the temporal evolution of synaptic weights, showing that measures of dynamic functional connectivity can be used to reliably reconstruct the evolution of structural properties of the network. Then, we extend current methods of directed causal communication between brain areas, by deriving an information-theoretic measure of Feature-specific Information Transfer (FIT) quantifying the amount, content and direction of information flow. We test FIT on simulated data, showing its key properties and advantages over traditional measures of overall propagated information. We show applications of FIT to several neural datasets obtained with different recording methods (magneto and electro-encephalography, spiking activity, local field potentials) during various cognitive functions, ranging from sensory perception to decision making and motor learning. Overall, these analyses demonstrate the ability of FIT to advance the investigation of communication between brain regions, uncovering the previously unaddressed content of directed information flow.
Resumo:
The research activity carried out during the PhD course was focused on the development of mathematical models of some cognitive processes and their validation by means of data present in literature, with a double aim: i) to achieve a better interpretation and explanation of the great amount of data obtained on these processes from different methodologies (electrophysiological recordings on animals, neuropsychological, psychophysical and neuroimaging studies in humans), ii) to exploit model predictions and results to guide future research and experiments. In particular, the research activity has been focused on two different projects: 1) the first one concerns the development of neural oscillators networks, in order to investigate the mechanisms of synchronization of the neural oscillatory activity during cognitive processes, such as object recognition, memory, language, attention; 2) the second one concerns the mathematical modelling of multisensory integration processes (e.g. visual-acoustic), which occur in several cortical and subcortical regions (in particular in a subcortical structure named Superior Colliculus (SC)), and which are fundamental for orienting motor and attentive responses to external world stimuli. This activity has been realized in collaboration with the Center for Studies and Researches in Cognitive Neuroscience of the University of Bologna (in Cesena) and the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA). PART 1. Objects representation in a number of cognitive functions, like perception and recognition, foresees distribute processes in different cortical areas. One of the main neurophysiological question concerns how the correlation between these disparate areas is realized, in order to succeed in grouping together the characteristics of the same object (binding problem) and in maintaining segregated the properties belonging to different objects simultaneously present (segmentation problem). Different theories have been proposed to address these questions (Barlow, 1972). One of the most influential theory is the so called “assembly coding”, postulated by Singer (2003), according to which 1) an object is well described by a few fundamental properties, processing in different and distributed cortical areas; 2) the recognition of the object would be realized by means of the simultaneously activation of the cortical areas representing its different features; 3) groups of properties belonging to different objects would be kept separated in the time domain. In Chapter 1.1 and in Chapter 1.2 we present two neural network models for object recognition, based on the “assembly coding” hypothesis. These models are networks of Wilson-Cowan oscillators which exploit: i) two high-level “Gestalt Rules” (the similarity and previous knowledge rules), to realize the functional link between elements of different cortical areas representing properties of the same object (binding problem); 2) the synchronization of the neural oscillatory activity in the γ-band (30-100Hz), to segregate in time the representations of different objects simultaneously present (segmentation problem). These models are able to recognize and reconstruct multiple simultaneous external objects, even in difficult case (some wrong or lacking features, shared features, superimposed noise). In Chapter 1.3 the previous models are extended to realize a semantic memory, in which sensory-motor representations of objects are linked with words. To this aim, the network, previously developed, devoted to the representation of objects as a collection of sensory-motor features, is reciprocally linked with a second network devoted to the representation of words (lexical network) Synapses linking the two networks are trained via a time-dependent Hebbian rule, during a training period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from linguistic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with some shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits). PART 2. The ability of the brain to integrate information from different sensory channels is fundamental to perception of the external world (Stein et al, 1993). It is well documented that a number of extraprimary areas have neurons capable of such a task; one of the best known of these is the superior colliculus (SC). This midbrain structure receives auditory, visual and somatosensory inputs from different subcortical and cortical areas, and is involved in the control of orientation to external events (Wallace et al, 1993). SC neurons respond to each of these sensory inputs separately, but is also capable of integrating them (Stein et al, 1993) so that the response to the combined multisensory stimuli is greater than that to the individual component stimuli (enhancement). This enhancement is proportionately greater if the modality-specific paired stimuli are weaker (the principle of inverse effectiveness). Several studies have shown that the capability of SC neurons to engage in multisensory integration requires inputs from cortex; primarily the anterior ectosylvian sulcus (AES), but also the rostral lateral suprasylvian sulcus (rLS). If these cortical inputs are deactivated the response of SC neurons to cross-modal stimulation is no different from that evoked by the most effective of its individual component stimuli (Jiang et al 2001). This phenomenon can be better understood through mathematical models. The use of mathematical models and neural networks can place the mass of data that has been accumulated about this phenomenon and its underlying circuitry into a coherent theoretical structure. In Chapter 2.1 a simple neural network model of this structure is presented; this model is able to reproduce a large number of SC behaviours like multisensory enhancement, multisensory and unisensory depression, inverse effectiveness. In Chapter 2.2 this model was improved by incorporating more neurophysiological knowledge about the neural circuitry underlying SC multisensory integration, in order to suggest possible physiological mechanisms through which it is effected. This endeavour was realized in collaboration with Professor B.E. Stein and Doctor B. Rowland during the 6 months-period spent at the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA), within the Marco Polo Project. The model includes four distinct unisensory areas that are devoted to a topological representation of external stimuli. Two of them represent subregions of the AES (i.e., FAES, an auditory area, and AEV, a visual area) and send descending inputs to the ipsilateral SC; the other two represent subcortical areas (one auditory and one visual) projecting ascending inputs to the same SC. Different competitive mechanisms, realized by means of population of interneurons, are used in the model to reproduce the different behaviour of SC neurons in conditions of cortical activation and deactivation. The model, with a single set of parameters, is able to mimic the behaviour of SC multisensory neurons in response to very different stimulus conditions (multisensory enhancement, inverse effectiveness, within- and cross-modal suppression of spatially disparate stimuli), with cortex functional and cortex deactivated, and with a particular type of membrane receptors (NMDA receptors) active or inhibited. All these results agree with the data reported in Jiang et al. (2001) and in Binns and Salt (1996). The model suggests that non-linearities in neural responses and synaptic (excitatory and inhibitory) connections can explain the fundamental aspects of multisensory integration, and provides a biologically plausible hypothesis about the underlying circuitry.
Resumo:
The ever-increasing spread of automation in industry puts the electrical engineer in a central role as a promoter of technological development in a sector such as the use of electricity, which is the basis of all the machinery and productive processes. Moreover the spread of drives for motor control and static converters with structures ever more complex, places the electrical engineer to face new challenges whose solution has as critical elements in the implementation of digital control techniques with the requirements of inexpensiveness and efficiency of the final product. The successfully application of solutions using non-conventional static converters awake an increasing interest in science and industry due to the promising opportunities. However, in the same time, new problems emerge whose solution is still under study and debate in the scientific community During the Ph.D. course several themes have been developed that, while obtaining the recent and growing interest of scientific community, have much space for the development of research activity and for industrial applications. The first area of research is related to the control of three phase induction motors with high dynamic performance and the sensorless control in the high speed range. The management of the operation of induction machine without position or speed sensors awakes interest in the industrial world due to the increased reliability and robustness of this solution combined with a lower cost of production and purchase of this technology compared to the others available in the market. During this dissertation control techniques will be proposed which are able to exploit the total dc link voltage and at the same time capable to exploit the maximum torque capability in whole speed range with good dynamic performance. The proposed solution preserves the simplicity of tuning of the regulators. Furthermore, in order to validate the effectiveness of presented solution, it is assessed in terms of performance and complexity and compared to two other algorithm presented in literature. The feasibility of the proposed algorithm is also tested on induction motor drive fed by a matrix converter. Another important research area is connected to the development of technology for vehicular applications. In this field the dynamic performances and the low power consumption is one of most important goals for an effective algorithm. Towards this direction, a control scheme for induction motor that integrates within a coherent solution some of the features that are commonly required to an electric vehicle drive is presented. The main features of the proposed control scheme are the capability to exploit the maximum torque in the whole speed range, a weak dependence on the motor parameters, a good robustness against the variations of the dc-link voltage and, whenever possible, the maximum efficiency. The second part of this dissertation is dedicated to the multi-phase systems. This technology, in fact, is characterized by a number of issues worthy of investigation that make it competitive with other technologies already on the market. Multiphase systems, allow to redistribute power at a higher number of phases, thus making possible the construction of electronic converters which otherwise would be very difficult to achieve due to the limits of present power electronics. Multiphase drives have an intrinsic reliability given by the possibility that a fault of a phase, caused by the possible failure of a component of the converter, can be solved without inefficiency of the machine or application of a pulsating torque. The control of the magnetic field spatial harmonics in the air-gap with order higher than one allows to reduce torque noise and to obtain high torque density motor and multi-motor applications. In one of the next chapters a control scheme able to increase the motor torque by adding a third harmonic component to the air-gap magnetic field will be presented. Above the base speed the control system reduces the motor flux in such a way to ensure the maximum torque capability. The presented analysis considers the drive constrains and shows how these limits modify the motor performance. The multi-motor applications are described by a well-defined number of multiphase machines, having series connected stator windings, with an opportune permutation of the phases these machines can be independently controlled with a single multi-phase inverter. In this dissertation this solution will be presented and an electric drive consisting of two five-phase PM tubular actuators fed by a single five-phase inverter will be presented. Finally the modulation strategies for a multi-phase inverter will be illustrated. The problem of the space vector modulation of multiphase inverters with an odd number of phases is solved in different way. An algorithmic approach and a look-up table solution will be proposed. The inverter output voltage capability will be investigated, showing that the proposed modulation strategy is able to fully exploit the dc input voltage either in sinusoidal or non-sinusoidal operating conditions. All this aspects are considered in the next chapters. In particular, Chapter 1 summarizes the mathematical model of induction motor. The Chapter 2 is a brief state of art on three-phase inverter. Chapter 3 proposes a stator flux vector control for a three- phase induction machine and compares this solution with two other algorithms presented in literature. Furthermore, in the same chapter, a complete electric drive based on matrix converter is presented. In Chapter 4 a control strategy suitable for electric vehicles is illustrated. Chapter 5 describes the mathematical model of multi-phase induction machines whereas chapter 6 analyzes the multi-phase inverter and its modulation strategies. Chapter 7 discusses the minimization of the power losses in IGBT multi-phase inverters with carrier-based pulse width modulation. In Chapter 8 an extended stator flux vector control for a seven-phase induction motor is presented. Chapter 9 concerns the high torque density applications and in Chapter 10 different fault tolerant control strategies are analyzed. Finally, the last chapter presents a positioning multi-motor drive consisting of two PM tubular five-phase actuators fed by a single five-phase inverter.
Resumo:
The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.
Resumo:
This thesis reports an integrated analytical approach for the study of physicochemical and biological properties of new synthetic bile acid (BA) analogues agonists of FXR and TGR5 receptors. Structure-activity data were compared with those previous obtained using the same experimental protocols on synthetic and natural occurring BA. The new synthetic BA analogues are classified in different groups according also to their potency as a FXR and TGR5 agonists: unconjugated and steroid modified BA and side chain modified BA including taurine or glycine conjugates and pseudo-conjugates (sulphonate and sulphate analogues). In order to investigate the relationship between structure and activity the synthetic analogues where admitted to a physicochemical characterization and to a preliminary screening for their pharmacokinetic and metabolism using a bile fistula rat model. Sensitive and accurate analytical methods have been developed for the quali-quantitative analysis of BA in biological fluids and sample used for physicochemical studies. Combined High Performance Liquid Chromatography Electrospray tandem mass spectrometry with efficient chromatographic separation of all studied BA and their metabolites have been optimized and validated. Analytical strategies for the identification of the BA and their minor metabolites have been developed. Taurine and glycine conjugates were identified in MS/MS by monitoring the specific ion transitions in multiple reaction monitoring (MRM) mode while all other metabolites (sulphate, glucuronic acid, dehydroxylated, decarboxylated or oxo) were monitored in a selected-ion reaction (SIR) mode with a negative ESI interface by the following ions. Accurate and precise data where achieved regarding the main physicochemical properties including solubility, detergency, lipophilicity and albumin binding . These studies have shown that minor structural modification greatly affect the pharmacokinetics and metabolism of the new analogues in respect to the natural BA and on turn their site of action, particularly where their receptor are located in the enterohepatic circulation.
Resumo:
Astrocytes are the most numerous glial cell type in the mammalian brain and permeate the entire CNS interacting with neurons, vasculature, and other glial cells. Astrocytes display intracellular calcium signals that encode information about local synaptic function, distributed network activity, and high-level cognitive functions. Several studies have investigated the calcium dynamics of astrocytes in sensory areas and have shown that these cells can encode sensory stimuli. Nevertheless, only recently the neuro-scientific community has focused its attention on the role and functions of astrocytes in associative areas such as the hippocampus. In our first study, we used the information theory formalism to show that astrocytes in the CA1 area of the hippocampus recorded with 2-photon fluorescence microscopy during spatial navigation encode spatial information that is complementary and synergistic to information encoded by nearby "place cell" neurons. In our second study, we investigated various computational aspects of applying the information theory formalism to astrocytic calcium data. For this reason, we generated realistic simulations of calcium signals in astrocytes to determine optimal hyperparameters and procedures of information measures and applied them to real astrocytic calcium imaging data. Calcium signals of astrocytes are characterized by complex spatiotemporal dynamics occurring in subcellular parcels of the astrocytic domain which makes studying these cells in 2-photon calcium imaging recordings difficult. However, current analytical tools which identify the astrocytic subcellular regions are time consuming and extensively rely on user-defined parameters. Here, we present Rapid Astrocytic calcium Spatio-Temporal Analysis (RASTA), a novel machine learning algorithm for spatiotemporal semantic segmentation of 2-photon calcium imaging recordings of astrocytes which operates without human intervention. We found that RASTA provided fast and accurate identification of astrocytic cell somata, processes, and cellular domains, extracting calcium signals from identified regions of interest across individual cells and populations of hundreds of astrocytes recorded in awake mice.