8 resultados para learning and teaching processes
em AMS Tesi di Dottorato - Alm@DL - Universit
Resumo:
In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented.
Resumo:
Creativity seems mysterious; when we experience a creative spark, it is difficult to explain how we got that idea, and we often recall notions like ``inspiration" and ``intuition" when we try to explain the phenomenon. The fact that we are clueless about how a creative idea manifests itself does not necessarily imply that a scientific explanation cannot exist. We are unaware of how we perform certain tasks, such as biking or language understanding, but we have more and more computational techniques that can replicate and hopefully explain such activities. We should understand that every creative act is a fruit of experience, society, and culture. Nothing comes from nothing. Novel ideas are never utterly new; they stem from representations that are already in mind. Creativity involves establishing new relations between pieces of information we had already: then, the greater the knowledge, the greater the possibility of finding uncommon connections, and the more the potential to be creative. In this vein, a beneficial approach to a better understanding of creativity must include computational or mechanistic accounts of such inner procedures and the formation of the knowledge that enables such connections. That is the aim of Computational Creativity: to develop computational systems for emulating and studying creativity. Hence, this dissertation focuses on these two related research areas: discussing computational mechanisms to generate creative artifacts and describing some implicit cognitive processes that can form the basis for creative thoughts.
Resumo:
The question of how we make, and how we should make judgments and decisions has occupied thinkers for many centuries. This thesis has the aim to add new evidences to clarify the brain’s mechanisms for decisions. The cognitive and the emotional processes of social actions and decisions are investigated with the aim to understand which brain areas are mostly involved. Four experimental studies are presented. A specific kind of population is involved in the first study (as well as in study III) concerning patients with lesion of ventromedial prefrontal cortex (vmPFC). This region is collocated in the ventral surface of frontal lobe, and it seems have an important role in social and moral decision in forecasting the negative emotional consequences of choice. In study I, it is examined whether emotions, specifically social emotions subserved by the vmPFC, affect people’s willingness to trust others. In study II is observed how incidental emotions could encourage trusting behaviour, especially when individuals are not aware of emotive stimulation. Study III has the aim to gather a direct psychophysiological evidence, both in healthy and neurologically impaired individuals, that emotions are crucially involved in shaping moral judgment, by preventing moral violations. Study IV explores how the moral meaning of a decision and its subsequent action can modulate the basic component of action such as sense of agency.
Resumo:
Several coralligenous reefs occur in the soft bottoms of the northern Adriatic continental shelf. Mediterranean coralligenous habitats are characterised by high species diversity and are intrinsically valuable for their biological diversity and for the ecological processes they support. The conservation and management of these habitats require quantifying spatial and temporal variability of their benthic assemblages. This PhD thesis aims to give a relevant contribution to the knowledge of the structure and dynamics of the epibenthic assemblages on the coralligenous subtidal reefs occurring in the northern Adriatic Sea. The epibenthic assemblages showed a spatial variation larger compared to temporal changes, with a temporal persistence of reef-forming organisms. Assemblages spatial heterogeneity has been related to morphological features and geographical location of the reefs, together with variation in the hydrological conditions. Manipulative experiments help to understand the ecological processes structuring the benthic assemblages and maintaining their diversity. In this regards a short and long term experiment on colonization patterns of artificial substrata over a 3-year period has been performed in three reefs, corresponding to the three main types of assemblages detected in the previous study. The first colonisers, largely depending by the different larval supply, played a key role in determining the heterogeneity of the assemblages in the early stage of colonisation. Lateral invasion, from the surrounding assemblages, was the driver in structuring the mature assemblages. These complex colonisation dynamics explained the high heterogeneity of the assemblages dwelling on the northern Adriatic biogenic reefs. The buildup of these coralligenous reefs mainly depends by the bioconstruction-erosion processes that has been analysed through a field experiment. Bioconstruction, largely due to serpulid polychaetes, prevailed on erosion processes and occurred at similar rates in all sites. Similarly, the total energy contents in the benthic communities do not differ among sites, despite being provided by different species. Therefore, we can hypothesise that both bioconstruction processes and energetic storage may be limited by the availability of resources. Finally the major contribution of the zoobenthos compared to the phytobenthos to the total energetic content of assemblages suggests that the energy flow in these benthic habitats is primarily supported by planktonic food web trough the filter feeding invertebrates.
Resumo:
Introduction and aims of the research Nitric oxide (NO) and endocannabinoids (eCBs) are major retrograde messengers, involved in synaptic plasticity (long-term potentiation, LTP, and long-term depression, LTD) in many brain areas (including hippocampus and neocortex), as well as in learning and memory processes. NO is synthesized by NO synthase (NOS) in response to increased cytosolic Ca2+ and mainly exerts its functions through soluble guanylate cyclase (sGC) and cGMP production. The main target of cGMP is the cGMP-dependent protein kinase (PKG). Activity-dependent release of eCBs in the CNS leads to the activation of the Gαi/o-coupled cannabinoid receptor 1 (CB1) at both glutamatergic and inhibitory synapses. The perirhinal cortex (Prh) is a multimodal associative cortex of the temporal lobe, critically involved in visual recognition memory. LTD is proposed to be the cellular correlate underlying this form of memory. Cholinergic neurotransmission has been shown to play a critical role in both visual recognition memory and LTD in Prh. Moreover, visual recognition memory is one of the main cognitive functions impaired in the early stages of Alzheimer’s disease. The main aim of my research was to investigate the role of NO and ECBs in synaptic plasticity in rat Prh and in visual recognition memory. Part of this research was dedicated to the study of synaptic transmission and plasticity in a murine model (Tg2576) of Alzheimer’s disease. Methods Field potential recordings. Extracellular field potential recordings were carried out in horizontal Prh slices from Sprague-Dawley or Dark Agouti juvenile (p21-35) rats. LTD was induced with a single train of 3000 pulses delivered at 5 Hz (10 min), or via bath application of carbachol (Cch; 50 μM) for 10 min. LTP was induced by theta-burst stimulation (TBS). In addition, input/output curves and 5Hz-LTD were carried out in Prh slices from 3 month-old Tg2576 mice and littermate controls. Behavioural experiments. The spontaneous novel object exploration task was performed in intra-Prh bilaterally cannulated adult Dark Agouti rats. Drugs or vehicle (saline) were directly infused into the Prh 15 min before training to verify the role of nNOS and CB1 in visual recognition memory acquisition. Object recognition memory was tested at 20 min and 24h after the end of the training phase. Results Electrophysiological experiments in Prh slices from juvenile rats showed that 5Hz-LTD is due to the activation of the NOS/sGC/PKG pathway, whereas Cch-LTD relies on NOS/sGC but not PKG activation. By contrast, NO does not appear to be involved in LTP in this preparation. Furthermore, I found that eCBs are involved in LTP induction, but not in basal synaptic transmission, 5Hz-LTD and Cch-LTD. Behavioural experiments demonstrated that the blockade of nNOS impairs rat visual recognition memory tested at 24 hours, but not at 20 min; however, the blockade of CB1 did not affect visual recognition memory acquisition tested at both time points specified. In three month-old Tg2576 mice, deficits in basal synaptic transmission and 5Hz-LTD were observed compared to littermate controls. Conclusions The results obtained in Prh slices from juvenile rats indicate that NO and CB1 play a role in the induction of LTD and LTP, respectively. These results are confirmed by the observation that nNOS, but not CB1, is involved in visual recognition memory acquisition. The preliminary results obtained in the murine model of Alzheimer’s disease indicate that deficits in synaptic transmission and plasticity occur very early in Prh; further investigations are required to characterize the molecular mechanisms underlying these deficits.
Resumo:
The aim of this thesis was to investigate the respective contribution of prior information and sensorimotor constraints to action understanding, and to estimate their consequences on the evolution of human social learning. Even though a huge amount of literature is dedicated to the study of action understanding and its role in social learning, these issues are still largely debated. Here, I critically describe two main perspectives. The first perspective interprets faithful social learning as an outcome of a fine-grained representation of others’ actions and intentions that requires sophisticated socio-cognitive skills. In contrast, the second perspective highlights the role of simpler decision heuristics, the recruitment of which is determined by individual and ecological constraints. The present thesis aims to show, through four experimental works, that these two contributions are not mutually exclusive. A first study investigates the role of the inferior frontal cortex (IFC), the anterior intraparietal area (AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial magnetic stimulation adaptation paradigm (TMSA). The second work studies whether, and how, higher-order and lower-order prior information (acquired from the probabilistic sampling of past events vs. derived from an estimation of biomechanical constraints of observed actions) interacts during the prediction of other people’s intentions. Using a single-pulse TMS procedure, the third study investigates whether the interaction between these two classes of priors modulates the motor system activity. The fourth study tests the extent to which behavioral and ecological constraints influence the emergence of faithful social learning strategies at a population level. The collected data contribute to elucidate how higher-order and lower-order prior expectations interact during action prediction, and clarify the neural mechanisms underlying such interaction. Finally, these works provide/open promising perspectives for a better understanding of social learning, with possible extensions to animal models.
Resumo:
The relationship between emotion and cognition is a topic that raises great interest in research. Recently, a view of these two processes as interactive and mutually influencing each other has become predominant. This dissertation investigates the reciprocal influences of emotion and cognition, both at behavioral and neural level, in two specific fields, such as attention and decision-making. Experimental evidence on how emotional responses may affect perceptual and attentional processes has been reported. In addition, the impact of three factors, such as personality traits, motivational needs and social context, in modulating the influence that emotion exerts on perception and attention has been investigated. Moreover, the influence of cognition on emotional responses in decision-making has been demonstrated. The current experimental evidence showed that cognitive brain regions such as the dorsolateral prefrontal cortex are causally implicated in regulation of emotional responses and that this has an effect at both pre and post decisional stages. There are two main conclusions of this dissertation: firstly, emotion exerts a strong influence on perceptual and attentional processes but, at the same time, this influence may also be modulated by other factors internal and external to the individuals. Secondly, cognitive processes may modulate emotional prepotent responses, by serving a regulative function critical to driving and shaping human behavior in line with current goals.
Resumo:
This work presents a comprehensive methodology for the reduction of analytical or numerical stochastic models characterized by uncertain input parameters or boundary conditions. The technique, based on the Polynomial Chaos Expansion (PCE) theory, represents a versatile solution to solve direct or inverse problems related to propagation of uncertainty. The potentiality of the methodology is assessed investigating different applicative contexts related to groundwater flow and transport scenarios, such as global sensitivity analysis, risk analysis and model calibration. This is achieved by implementing a numerical code, developed in the MATLAB environment, presented here in its main features and tested with literature examples. The procedure has been conceived under flexibility and efficiency criteria in order to ensure its adaptability to different fields of engineering; it has been applied to different case studies related to flow and transport in porous media. Each application is associated with innovative elements such as (i) new analytical formulations describing motion and displacement of non-Newtonian fluids in porous media, (ii) application of global sensitivity analysis to a high-complexity numerical model inspired by a real case of risk of radionuclide migration in the subsurface environment, and (iii) development of a novel sensitivity-based strategy for parameter calibration and experiment design in laboratory scale tracer transport.