2 resultados para general regression model

em AMS Tesi di Dottorato - Alm@DL - Universit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work we perform an econometric analysis of the Tribal art market. To this aim, we use a unique and original database that includes information on Tribal art market auctions worldwide from 1998 to 2011. In Literature, art prices are modelled through the hedonic regression model, a classic fixed-effect model. The main drawback of the hedonic approach is the large number of parameters, since, in general, art data include many categorical variables. In this work, we propose a multilevel model for the analysis of Tribal art prices that takes into account the influence of time on artwork prices. In fact, it is natural to assume that time exerts an influence over the price dynamics in various ways. Nevertheless, since the set of objects change at every auction date, we do not have repeated measurements of the same items over time. Hence, the dataset does not constitute a proper panel; rather, it has a two-level structure in that items, level-1 units, are grouped in time points, level-2 units. The main theoretical contribution is the extension of classical multilevel models to cope with the case described above. In particular, we introduce a model with time dependent random effects at the second level. We propose a novel specification of the model, derive the maximum likelihood estimators and implement them through the E-M algorithm. We test the finite sample properties of the estimators and the validity of the own-written R-code by means of a simulation study. Finally, we show that the new model improves considerably the fit of the Tribal art data with respect to both the hedonic regression model and the classic multilevel model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study has been carried out with the following objectives: i) To investigate the attributes of source parameters of local and regional earthquakes; ii) To estimate, as accurately as possible, M0, fc, Δσ and their standard errors to infer their relationship with source size; iii) To quantify high-frequency earthquake ground motion and to study the source scaling. This work is based on observational data of micro, small and moderate -earthquakes for three selected seismic sequences, namely Parkfield (CA, USA), Maule (Chile) and Ferrara (Italy). For the Parkfield seismic sequence (CA), a data set of 757 (42 clusters) repeating micro-earthquakes (0 ≤ MW ≤ 2), collected using borehole High Resolution Seismic Network (HRSN), have been analyzed and interpreted. We used the coda methodology to compute spectral ratios to obtain accurate values of fc , Δσ, and M0 for three target clusters (San Francisco, Los Angeles, and Hawaii) of our data. We also performed a general regression on peak ground velocities to obtain reliable seismic spectra of all earthquakes. For the Maule seismic sequence, a data set of 172 aftershocks of the 2010 MW 8.8 earthquake (3.7 ≤ MW ≤ 6.2), recorded by more than 100 temporary broadband stations, have been analyzed and interpreted to quantify high-frequency earthquake ground motion in this subduction zone. We completely calibrated the excitation and attenuation of the ground motion in Central Chile. For the Ferrara sequence, we calculated moment tensor solutions for 20 events from MW 5.63 (the largest main event occurred on May 20 2012), down to MW 3.2 by a 1-D velocity model for the crust beneath the Pianura Padana, using all the geophysical and geological information available for the area. The PADANIA model allowed a numerical study on the characteristics of the ground motion in the thick sediments of the flood plain.