5 resultados para collision avoidance

em AMS Tesi di Dottorato - Alm@DL - Universit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing interest for constellation of small, less expensive satellites is bringing space junk and traffic management to the attention of space community. At the same time, the continuous quest for more efficient propulsion systems put the spotlight on electric (low thrust) propulsion as an appealing solution for collision avoidance. Starting with an overview of the current techniques for conjunction assessment and avoidance, we then highlight the possible problems when a low thrust propulsion is used. The need for accurate propagation model shows up from the conducted simulations. Thus, aiming at propagation models with low computational burden, we study the available models from the literature and propose an analytical alternative to improve propagation accuracy. The model is then tested in the particular case of a tangential maneuver. Results show that the proposed solution significantly improve on state of the art methods and is a good candidate to be used in collision avoidance operations. For instance to propagate satellite uncertainty or optimizing avoidance maneuver when conjunction occurs within few (3-4) orbits from measurements time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis deals with distributed control strategies for cooperative control of multi-robot systems. Specifically, distributed coordination strategies are presented for groups of mobile robots. The formation control problem is initially solved exploiting artificial potential fields. The purpose of the presented formation control algorithm is to drive a group of mobile robots to create a completely arbitrarily shaped formation. Robots are initially controlled to create a regular polygon formation. A bijective coordinate transformation is then exploited to extend the scope of this strategy, to obtain arbitrarily shaped formations. For this purpose, artificial potential fields are specifically designed, and robots are driven to follow their negative gradient. Artificial potential fields are then subsequently exploited to solve the coordinated path tracking problem, thus making the robots autonomously spread along predefined paths, and move along them in a coordinated way. Formation control problem is then solved exploiting a consensus based approach. Specifically, weighted graphs are used both to define the desired formation, and to implement collision avoidance. As expected for consensus based algorithms, this control strategy is experimentally shown to be robust to the presence of communication delays. The global connectivity maintenance issue is then considered. Specifically, an estimation procedure is introduced to allow each agent to compute its own estimate of the algebraic connectivity of the communication graph, in a distributed manner. This estimate is then exploited to develop a gradient based control strategy that ensures that the communication graph remains connected, as the system evolves. The proposed control strategy is developed initially for single-integrator kinematic agents, and is then extended to Lagrangian dynamical systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Progress in miniaturization of electronic components and design of wireless systems paved the way towards ubiquitous and pervasive communications, enabling anywhere and anytime connectivity. Wireless devices present on, inside, around the human body are becoming commonly used, leading to the class of body-centric communications. The presence of the body with all its peculiar characteristics has to be properly taken into account in the development and design of wireless networks in this context. This thesis addresses various aspects of body-centric communications, with the aim of investigating network performance achievable in different scenarios. The main original contributions pertain to the performance evaluation for Wireless Body Area Networks (WBANs) at the Medium Access Control layer: the application of Link Adaptation to these networks is proposed, Carrier Sense Multiple Access with Collision Avoidance algorithms used for WBAN are extensively investigated, coexistence with other wireless systems is examined. Then, an analytical model for interference in wireless access network is developed, which can be applied to the study of communication between devices located on humans and fixed nodes of an external infrastructure. Finally, results on experimental activities regarding the investigation of human mobility and sociality are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Safe collaboration between a robot and human operator forms a critical requirement for deploying a robotic system into a manufacturing and testing environment. In this dissertation, the safety requirement for is developed and implemented for the navigation system of the mobile manipulators. A methodology for human-robot co-existence through a 3d scene analysis is also investigated. The proposed approach exploits the advance in computing capability by relying on graphic processing units (GPU’s) for volumetric predictive human-robot contact checking. Apart from guaranteeing safety of operators, human-robot collaboration is also fundamental when cooperative activities are required, as in appliance test automation floor. To achieve this, a generalized hierarchical task controller scheme for collision avoidance is developed. This allows the robotic arm to safely approach and inspect the interior of the appliance without collision during the testing procedure. The unpredictable presence of the operators also forms dynamic obstacle that changes very fast, thereby requiring a quick reaction from the robot side. In this aspect, a GPU-accelarated distance field is computed to speed up reaction time to avoid collision between human operator and the robot. An automated appliance testing also involves robotized laundry loading and unloading during life cycle testing. This task involves Laundry detection, grasp pose estimation and manipulation in a container, inside the drum and during recovery grasping. A wrinkle and blob detection algorithms for grasp pose estimation are developed and grasp poses are calculated along the wrinkle and blobs to efficiently perform grasping task. By ranking the estimated laundry grasp poses according to a predefined cost function, the robotic arm attempt to grasp poses that are more comfortable from the robot kinematic side as well as collision free on the appliance side. This is achieved through appliance detection and full-model registration and collision free trajectory execution using online collision avoidance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis three measurements of top-antitop differential cross section at an energy in the center of mass of 7 TeV will be shown, as a function of the transverse momentum, the mass and the rapidity of the top-antitop system. The analysis has been carried over a data sample of about 5/fb recorded with the ATLAS detector. The events have been selected with a cut based approach in the "one lepton plus jets" channel, where the lepton can be either an electron or a muon. The most relevant backgrounds (multi-jet QCD and W+jets) have been extracted using data driven methods; the others (Z+ jets, diboson and single top) have been simulated with Monte Carlo techniques. The final, background-subtracted, distributions have been corrected, using unfolding methods, for the detector and selection effects. At the end, the results have been compared with the theoretical predictions. The measurements are dominated by the systematic uncertainties and show no relevant deviation from the Standard Model predictions.