5 resultados para anaerobic component
em AMS Tesi di Dottorato - Alm@DL - Universit
Resumo:
A fundamental assumption for by-product from winery industy waste-management is their economic and commercial increase in value. High energetic value recovery from winery industry is an attractive economic solution to stimulate new sustainable process. Approach of this work is based about physic and biological treatment with grape stalks and grape marc to increase polysaccharides components of cell wall and energetic availability of this by-products. Grape stalks for example have a high percentage of lignin and cellulose and can’t be used, whitout pretreatment, for an anaerobic digestion process. Our findings show enzymatic and thermo-mechanical pre-treatments in combined application for optimise hydrolytic mechanism on winemaking wastes which represents 0,9 milion ton/year in Italy and on straw, cereal by-products with high lignin content. A screening of specifically industrial enzymatic complex for the hydrolysis lignocellulosic biomass were tested using the principal polysaccharides component of the vegetal cells. Combined thermo-mechanical and enzymatic pretreatment improve substrates conversion in batch test fermentation experiment. The conservation of the grape stalks, at temperature above 0°C, allow the growth of spontaneus fermentation that reduce their polysaccharides content so had investigated anarobic condition of conservation. The other objective of this study was to investigate the capability of a proprietary strain of L.buchneri LN 40177 to enhance the accessibility of fermentable forage constituents during the anaerobic conservation process by releasing the enzyme ferulate esterase. The time sequence study by batch tests showed that the L. buchneri LN-40177 inoculated grape stalk substrate was more readily available in the fermenter. In batch tests with grape stalk, after mechanical treatment, the L. buchneri LN41077 treated substrate yielded on average 70% more biogas per kg/DM. Thermo-mechanical, enzymatic and biological treatment with L. buchneri LN-40177 can increase the biogas production from low fermented biomasses and the consequent their useful in anaerobic biodigesters for agro-bioenergy production.
Resumo:
Clostridium difficile is an obligate anaerobic, Gram-positive, endospore-forming bacterium. Although an opportunistic pathogen, it is one of the important causes of healthcare-associated infections. While toxins TcdA and TcdB are the main virulence factors of C. difficile, the factors or processes involved in gut colonization during infection remain unclear. The biofilm-forming ability of bacterial pathogens has been associated with increased antibiotic resistance and chronic recurrent infections. Little is known about biofilm formation by anaerobic gut species. Biofilm formation by C. difficile could play a role in virulence and persistence of C. difficile, as seen for other intestinal pathogens. We demonstrate that C. difficile clinical strains, 630, and the strain isolated in the outbreak, R20291, form structured biofilms in vitro. Biofilm matrix is made of proteins, DNA and polysaccharide. Strain R20291 accumulates substantially more biofilm. Employing isogenic mutants, we show that virulence-associated proteins, Cwp84, flagella and a putative quorum sensing regulator, LuxS, Spo0A, are required for maximal biofilm formation by C. difficile. Moreover we demonstrate that bacteria in C. difficile biofilms are more resistant to high concentrations of vancomycin, a drug commonly used for treatment of CDI, and that inhibitory and sub-inhibitory concentrations of the same antibiotic induce biofilm formation. Surprisingly, clinical C. difficile strains from the same out-break, but from different origin, show differences in biofilm formation. Genome sequence analysis of these strains showed presence of a single nucleoide polymorphism (SNP) in the anti-σ factor RsbW, which regulates the stress-induced alternative sigma factor B (σB). We further demonstrate that RsbW, a negative regulator of alternative sigma factor B, has a role in biofilm formation and sporulation of C. difficile. Our data suggest that biofilm formation by C. difficile is a complex multifactorial process and may be a crucial mechanism for clostridial persistence in the host.
Resumo:
Group B Streptococcus (GBS), in its transition from commensal to pathogen, will encounter diverse host environments and thus require coordinately controlling its transcriptional responses to these changes. This work was aimed at better understanding the role of two component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knock-out strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1-3% of the genome. Interestingly, two sugar phosphotransferase systems appeared differently regulated in the knock-out mutant of TCS-16, suggesting an involvement in monitoring carbon source availability. High throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16 with concomitant dramatic up-regulation of the adjacent operon encoding a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization and impaired growth/survival in the presence of vaginal mucoid components. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and also provide experimental evidence for TCS-17/RgfAC involvement in virulence.
Resumo:
Methane yield of ligno-cellulosic substrates (i.e. dedicated energy crops and agricultural residues) may be limited by their composition and structural features. Hence, biomass pre-treatments are envisaged to overcome this constraint. This thesis aimed at: i) assessing biomass and methane yield of dedicated energy crops; ii) evaluating the effects of hydrothermal pre-treatments on methane yield of Arundo; iii) investigating the effects of NaOH pre-treatments and iv) acid pre-treatments on chemical composition, physical structure and methane yield of two dedicated energy crops and one agricultural residue. Three multi-annual species (Arundo, Switchgrass and Sorghum Silk), three sorghum hybrids (Trudan Headless, B133 and S506) and a maize, as reference for AD, were studied in the frame of point i). Results exhibit the remarkable variation in biomass yield, chemical characteristics and potential methane yield. The six species alternative to maize deserve attention in view of a low need of external inputs but necessitate improvements in biodegradability. In the frame of point ii), Arundo was subjected to hydrothermal pre-treatments at different temperature, time and acid catalyst (with and without H2SO4). Pre-treatments determined a variable effect on methane yield: pre-treatments without acid catalyst achieved up to +23% CH4 output, while pre-treatments with H2SO4 catalyst incurred a methanogenic inhibition. Two biomass crops (Arundo and B133) and an agricultural residue (Barley straw) were subject to NaOH and acid pre-treatments, in the frame of point iii) and iv), respectively. Different pre-treatments determined a change of chemical and physical structure and an increase of methane yield: up to +30% and up to +62% CH4 output in Arundo with NaOH and acid pre-treatments, respectively. It is thereby demonstrated that pre-treatments can actually enhance biodegradability and subsequent CH4 output of ligno-cellulosic substrates, although pre-treatment viability needs to be evaluated at the level of full scale biogas plants in a perspective of profitable implementation.
Resumo:
Obbiettivo: Valutazione delle eventuali differenze nel trattamento ortodontico di un gruppo di bambini con particolari necessità sanitarie (SHCN) rispetto ad un gruppo di bambini non diagnosticati con SHCN. Materiali e Metodi: Il gruppo campione (SHCN) è costituito da 50 bambini con SHCN. Il gruppo di controllo (NO SHCN) è costituito da 50 bambini non diagnosticati con SHCN pienamente corrispondenti per età, genere e tipo di apparecchio ortodontico utilizzato con i pazienti del gruppo di studio. I dati riguardanti i gruppi SHCN e NO SHCN sono stati analizzati in modo retrospettivo, valutando: - il punteggio pre- e post-trattamento e la riduzione finale dei valori dell'indice PAR (Peer Assessment Rating), della componente DHC (Dental Health Component) e della componente AC (Aesthetic Component) dell'indice IOTN (Orthodontic Treatment Need Index), - il numero di appuntamenti, - il numero di sedute semplici e complesse, - la durata complessiva del trattamento, - l'età all’inizio ed alla fine della terapia. Risultati: Non sono state rilevate differenze statisticamente significative tra i due gruppi per quanto concerne il numero di appuntamenti, la durata complessiva del trattamento, l'età all’inizio ed alla fine della terapia ortodontica (valori del p-value:0.682, 0.458, 0.535, 0.675). Sono state rilevate differenze statisticamente significative tra i due gruppi per quanto riguarda i punteggi dell’indice PAR, delle componenti DHC e AC dello IOTN pre- e post-trattamento, il numero di sedute semplici e complesse (valori del p-value:0.030, 0.000, 0.020, 0.023, 0.000, 0.000, 0.043, 0.037). Per quanto concerne la riduzione finale del valore dell’indice PAR, della componente DHC e di quella AC dello IOTN non sono state riscontrate differenze statisticamente significative tra i due gruppi (valori del p-value:0.060, 0.765, 0.825). Conclusioni: Lo studio incoraggia gli ortodontisti a trattare i bambini con SHCN nell'obiettivo di migliorarne la qualità di vita, pur evidenziando la necessità di un maggior numero di sedute complesse.