8 resultados para PV array

em AMS Tesi di Dottorato - Alm@DL - Universit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Mill., Solanum lycopersicon L.) is one of the most popular vegetable throughout the world, and the importance of its cultivation is threatened by a wide array of pathogens. In the last twenty years this plant has been successfully used as a model plant to investigate the induction of defense pathways after exposure to fungal, bacterial and abiotic molecules, showing triggering of different mechanisms of resistance. Understanding these mechanisms in order to improve crop protection is a main goal for Plant Pathology. The aim of this study was to search for general or race-specific molecules able to determine in Solanum lycopersicon immune responses attributable to the main systems of plant defense: non-host, host-specific and induced resistance. Exopolysaccharides extracted by three fungal species (Aureobasidium pullulans, Cryphonectria parasitica and Epicoccum purpurascens), were able to induce transcription of pathogenesis-related (PR) proteins and accumulation of enzymes related to defense in tomato plants cv Money Maker,using the chemical inducer Bion® as a positive control. During the thesis, several Pseudomonas spp. strains were also isolated and tested for their antimicrobial activity and ability to produce antibiotics. Using as a positive control jasmonic acid, one of the selected strain was shown to induce a form of systemic resistance in tomato. Transcription of PRs and reduction of disease severity against the leaf pathogen Pseduomonas syringae pv. tomato was determined in tomato plants cv Money Maker and cv Perfect Peel, ensuring no direct contact between the selected rhizobacteria and the aerial part of the plant. To conclude this work, race-specific resistance of tomato against the leaf mold Cladosporium fulvum is also deepened, describing the project followed at the Phytopathology Laboratory of Wageningen (NL) in 2007, dealing with localization of a specific R-Avr interaction in transfected tomato protoplast cultures through fluorescence microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new conversion structure for three-phase grid-connected photovoltaic (PV) generation plants is presented and discussed in this Thesis. The conversion scheme is based on two insulated PV arrays, each one feeding the dc bus of a standard 2-level three-phase voltage source inverter (VSI). Inverters are connected to the grid by a traditional three-phase transformer having open-end windings at inverters side and either star or delta connection at the grid side. The resulting conversion structure is able to perform as a multilevel VSI, equivalent to a 3-level inverter, doubling the power capability of a single VSI with given voltage and current ratings. Different modulation schemes able to generate proper multilevel voltage waveforms have been discussed and compared. They include known algorithms, some their developments, and new original approaches. The goal was to share the grid power with a given ratio between the two VSI within each cycle period of the PWM, being the PWM pattern suitable for the implementation in industrial DSPs. It has been shown that an extension of the modulation methods for standard two-level inverter can provide a elegant solution for dual two-level inverter. An original control method has been introduced to regulate the dc-link voltages of each VSI, according to the voltage reference given by a single MPPT controller. A particular MPPT algorithm has been successfully tested, based on the comparison of the operating points of the two PV arrays. The small deliberately introduced difference between two operating dc voltages leads towards the MPP in a fast and accurate manner. Either simulation or experimental tests, or even both, always accompanied theoretical developments. For the simulation, the Simulink tool of Matlab has been adopted, whereas the experiments have been carried out by a full-scale low-voltage prototype of the whole PV generation system. All the research work was done at the Lab of the Department of Electrical Engineering, University of Bologna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diameters of traditional dish concentrators can reach several tens of meters, the construction of monolithic mirrors being difficult at these scales: cheap flat reflecting facets mounted on a common frame generally reproduce a paraboloidal surface. When a standard imaging mirror is coupled with a PV dense array, problems arise since the solar image focused is intrinsically circular. Moreover, the corresponding irradiance distribution is bell-shaped in contrast with the requirement of having all the cells under the same illumination. Mismatch losses occur when interconnected cells experience different conditions, in particular in series connections. In this PhD Thesis, we aim at solving these issues by a multidisciplinary approach, exploiting optical concepts and applications developed specifically for astronomical use, where the improvement of the image quality is a very important issue. The strategy we propose is to boost the spot uniformity acting uniquely on the primary reflector and avoiding the big mirrors segmentation into numerous smaller elements that need to be accurately mounted and aligned. In the proposed method, the shape of the mirrors is analytically described by the Zernike polynomials and its optimization is numerically obtained to give a non-imaging optics able to produce a quasi-square spot, spatially uniform and with prescribed concentration level. The freeform primary optics leads to a substantial gain in efficiency without secondary optics. Simple electrical schemes for the receiver are also required. The concept has been investigated theoretically modeling an example of CPV dense array application, including the development of non-optical aspects as the design of the detector and of the supporting mechanics. For the method proposed and the specific CPV system described, a patent application has been filed in Italy with the number TO2014A000016. The patent has been developed thanks to the collaboration between the University of Bologna and INAF (National Institute for Astrophysics).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis analyses the hydrodynamic induced by an array of Wave energy Converters (WECs), under an experimental and numerical point of view. WECs can be considered an innovative solution able to contribute to the green energy supply and –at the same time– to protect the rear coastal area under marine spatial planning considerations. This research activity essentially rises due to this combined concept. The WEC under exam is a floating device belonging to the Wave Activated Bodies (WAB) class. Experimental data were performed at Aalborg University in different scales and layouts, and the performance of the models was analysed under a variety of irregular wave attacks. The numerical simulations performed with the codes MIKE 21 BW and ANSYS-AQWA. Experimental results were also used to calibrate the numerical parameters and/or to directly been compared to numerical results, in order to extend the experimental database. Results of the research activity are summarized in terms of device performance and guidelines for a future wave farm installation. The device length should be “tuned” based on the local climate conditions. The wave transmission behind the devices is pretty high, suggesting that the tested layout should be considered as a module of a wave farm installation. Indications on the minimum inter-distance among the devices are provided. Furthermore, a CALM mooring system leads to lower wave transmission and also larger power production than a spread mooring. The two numerical codes have different potentialities. The hydrodynamics around single and multiple devices is obtained with MIKE 21 BW, while wave loads and motions for a single moored device are derived from ANSYS-AQWA. Combining the experimental and numerical it is suggested –for both coastal protection and energy production– to adopt a staggered layout, which will maximise the devices density and minimize the marine space required for the installation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il cancro batterico dell’actinidia causato da Pseudomonas syringae pv.actinidiae (Psa) suscita grande interesse a livello globale a partire dal 2008. La malattia è comparsa in Giappone e in due anni ha avuto una diffusione epidemica in tutte le aree di coltivazione mondiale di actinidia. Gravi perdite economiche hanno attirato l’attenzione internazionale su questa problematica e grandi sforzi sono stati rivolti allo studio di questo patosistema ancora poco conosciuto. E’ emerso infatti che il patogeno può rimanere in fase latente per lunghi periodi senza causare sintomi caratteristici nelle piante infette, e che dalla comparsa dei sintomi la pianta muore nell’arco di un paio d’anni. Il monitoraggio ed il controllo della situazione è perciò di fondamentale importanza ed è ancora più importante prevenire la comparsa di nuovi focolai di infezione. A questo proposito sarebbe opportuno l’impiego di materiale vegetale di propagazione non infetto, ma in molti casi questo diventa difficile, dal momento che il materiale impiegato è generalmente quello asintomatico, non analizzato precedentemente per la presenza del patogeno. Negli ultimi anni sono state perciò messe a punto molte tecniche molecolari per l’identificazione di Psa direttamente da materiale vegetale. L’obiettivo di questo lavoro è stato quello di studiare l’epidemiologia di Psa in piante adulte infette e di verificare l’efficacia di metodi di diagnosi precoce per prevenire la malattia. A tale scopo il lavoro sperimentale è stato suddiviso in diverse fasi: i) studio della localizzazione, traslocazione e sopravvivenza di Psa nelle piante, a seguito di inoculazione in piante adulte di actinidia di ceppi marcati Psa::gfp; ii) studio della capacità di Psa di essere mantenuto in germogli di actinidia attraverso sette generazioni di micropropagazione dopo l’inoculazione delle piante madri con lo stesso ceppo marcato Psa::gfp; iii) studio ed applicazioni di un nuovo metodo di diagnosi precoce di Psa basato sull’analisi molecolare del “pianto”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis work we will explore and discuss the properties of the gamma-ray sources included in the first Fermi-LAT catalog of sources above 10 GeV (1FHL), by considering both blazars and the non negligible fraction of still unassociated gamma-ray sources (UGS, 13%). We perform a statistical analysis of a complete sample of hard gamma-ray sources, included in the 1FHL catalog, mostly composed of HSP blazars, and we present new VLBI observations of the faintest members of the sample. The new VLBI data, complemented by an extensive search of the archives for brighter sources, are essential to gather a sample as large as possible for the assessment of the significance of the correlation between radio and very high energy (E>100 GeV) emission bands. After the characterization of the statistical properties of HSP blazars and UGS, we use a complementary approach, by focusing on an intensive multi-frequency observing VLBI and gamma-ray campaign carried out for one of the most remarkable and closest HSP blazar Markarian 421.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cherenkov Telescope Array (CTA) will be the next-generation ground-based observatory to study the universe in the very-high-energy domain. The observatory will rely on a Science Alert Generation (SAG) system to analyze the real-time data from the telescopes and generate science alerts. The SAG system will play a crucial role in the search and follow-up of transients from external alerts, enabling multi-wavelength and multi-messenger collaborations. It will maximize the potential for the detection of the rarest phenomena, such as gamma-ray bursts (GRBs), which are the science case for this study. This study presents an anomaly detection method based on deep learning for detecting gamma-ray burst events in real-time. The performance of the proposed method is evaluated and compared against the Li&Ma standard technique in two use cases of serendipitous discoveries and follow-up observations, using short exposure times. The method shows promising results in detecting GRBs and is flexible enough to allow real-time search for transient events on multiple time scales. The method does not assume background nor source models and doe not require a minimum number of photon counts to perform analysis, making it well-suited for real-time analysis. Future improvements involve further tests, relaxing some of the assumptions made in this study as well as post-trials correction of the detection significance. Moreover, the ability to detect other transient classes in different scenarios must be investigated for completeness. The system can be integrated within the SAG system of CTA and deployed on the onsite computing clusters. This would provide valuable insights into the method's performance in a real-world setting and be another valuable tool for discovering new transient events in real-time. Overall, this study makes a significant contribution to the field of astrophysics by demonstrating the effectiveness of deep learning-based anomaly detection techniques for real-time source detection in gamma-ray astronomy.