5 resultados para Optimal network configuration

em AMS Tesi di Dottorato - Alm@DL - Universit


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Plasma Focus is a device designed to generate a plasma sheet between two coaxial electrodes by means of a high voltage difference. The plasma is then driven to collapse into a “pinch”, where thermonuclear conditions prevail. During the “pinch phase” charged particles are emitted, with two main components: an ion beam peaked forward and an electron beam directed backward. The electron beam emitted backward by Plasma Focus devices is being investigated as a radiation source for medical applications, using it to produce x-rays by interaction with appropriate targets (through bremsstrahlung and characteristic emission). A dedicated Plasma Focus device, named PFMA-3 (Plasma Focus for Medical Applications number 3), has been designed, put in operation and tested by the research groups of the Universities of Bologna and Ferrara. The very high dose rate (several gray per discharge, in less than 1 µs) is a peculiarity of this device that has to be investigated, as it might modify the relative biological effectiveness (RBE). Aim of this Ph.D. project was to investigate the main physical properties of the low-energy x-ray beams produced by a Plasma Focus device and their potential medical applications to IORT treatments. It was necessary to develop the optimal geometrical configuration; to evaluate the x-rays produced and their dose deposited; to estimate the energy electron spectrum produced in the “pinch phase”; to study an optimal target for the conversion of the x-rays; to conduct simulations to study the physics involved; and in order to evaluate the radio-biological features of the beam, cell holders had to be developed for both irradiations and cell growth conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The inversion of seismo-volcanic events is performed to retrieve the source geometry and to determine volumetric budgets of the source. Such observations have shown to be an important tool for the seismological monitoring of volcanoes. We developed a novel technique for the non-linear constrained inversion of low frequency seismo-volcanic events. Unconstrained linear inversion methods work well when a dense network of broadband seismometers is available. We propose a new constrained inversion technique, which has shown to be efficient also in a reduced network configuration and a low signal-noise ratio. The waveform inversion is performed in the frequency domain, constraining the source mechanism during the event to vary only in its magnitude. The eigenvectors orientation and the eigenvalue ratio are kept constant. This significantly reduces the number of parameters to invert, making the procedure more stable. The method has been tested over a synthetic dataset, reproducing realistic very-long-period (VLP) signals of Stromboli volcano. The information obtained by performing the synthetic tests is used to assess the reliability of the results obtained on a VLP dataset recorded on Stromboli volcano and on a low frequency events recorded at Vesuvius volcano.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-Processor SoC (MPSOC) design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. Scaling down of process technologies has increased process and dynamic variations as well as transistor wearout. Because of this, delay variations increase and impact the performance of the MPSoCs. The interconnect architecture inMPSoCs becomes a single point of failure as it connects all other components of the system together. A faulty processing element may be shut down entirely, but the interconnect architecture must be able to tolerate partial failure and variations and operate with performance, power or latency overhead. This dissertation focuses on techniques at different levels of abstraction to face with the reliability and variability issues in on-chip interconnection networks. By showing the test results of a GALS NoC testchip this dissertation motivates the need for techniques to detect and work around manufacturing faults and process variations in MPSoCs’ interconnection infrastructure. As a physical design technique, we propose the bundle routing framework as an effective way to route the Network on Chips’ global links. For architecture-level design, two cases are addressed: (I) Intra-cluster communication where we propose a low-latency interconnect with variability robustness (ii) Inter-cluster communication where an online functional testing with a reliable NoC configuration are proposed. We also propose dualVdd as an orthogonal way of compensating variability at the post-fabrication stage. This is an alternative strategy with respect to the design techniques, since it enforces the compensation at post silicon stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we will see that the DNA sequence is constantly shaped by the interactions with its environment at multiple levels, showing footprints of DNA methylation, of its 3D organization and, in the case of bacteria, of the interaction with the host organisms. In the first chapter, we will see that analyzing the distribution of distances between consecutive dinucleotides of the same type along the sequence, we can detect epigenetic and structural footprints. In particular, we will see that CG distance distribution allows to distinguish among organisms of different biological complexity, depending on how much CG sites are involved in DNA methylation. Moreover, we will see that CG and TA can be described by the same fitting function, suggesting a relationship between the two. We will also provide an interpretation of the observed trend, simulating a positioning process guided by the presence and absence of memory. In the end, we will focus on TA distance distribution, characterizing deviations from the trend predicted by the best fitting function, and identifying specific patterns that might be related to peculiar mechanical properties of the DNA and also to epigenetic and structural processes. In the second chapter, we will see how we can map the 3D structure of the DNA onto its sequence. In particular, we devised a network-based algorithm that produces a genome assembly starting from its 3D configuration, using as inputs Hi-C contact maps. Specifically, we will see how we can identify the different chromosomes and reconstruct their sequences by exploiting the spectral properties of the Laplacian operator of a network. In the third chapter, we will see a novel method for source clustering and source attribution, based on a network approach, that allows to identify host-bacteria interaction starting from the detection of Single-Nucleotide Polymorphisms along the sequence of bacterial genomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water Distribution Networks (WDNs) play a vital importance rule in communities, ensuring well-being band supporting economic growth and productivity. The need for greater investment requires design choices will impact on the efficiency of management in the coming decades. This thesis proposes an algorithmic approach to address two related problems:(i) identify the fundamental asset of large WDNs in terms of main infrastructure;(ii) sectorize large WDNs into isolated sectors in order to respect the minimum service to be guaranteed to users. Two methodologies have been developed to meet these objectives and subsequently they were integrated to guarantee an overall process which allows to optimize the sectorized configuration of WDN taking into account the needs to integrated in a global vision the two problems (i) and (ii). With regards to the problem (i), the methodology developed introduces the concept of primary network to give an answer with a dual approach, of connecting main nodes of WDN in terms of hydraulic infrastructures (reservoirs, tanks, pumps stations) and identifying hypothetical paths with the minimal energy losses. This primary network thus identified can be used as an initial basis to design the sectors. The sectorization problem (ii) has been faced using optimization techniques by the development of a new dedicated Tabu Search algorithm able to deal with real case studies of WDNs. For this reason, three new large WDNs models have been developed in order to test the capabilities of the algorithm on different and complex real cases. The developed methodology also allows to automatically identify the deficient parts of the primary network and dynamically includes new edges in order to support a sectorized configuration of the WDN. The application of the overall algorithm to the new real case studies and to others from literature has given applicable solutions even in specific complex situations.