3 resultados para Numerical scheme

em AMS Tesi di Dottorato - Alm@DL - Universit


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work considers the reconstruction of strong gravitational lenses from their observed effects on the light distribution of background sources. After reviewing the formalism of gravitational lensing and the most common and relevant lens models, new analytical results on the elliptical power law lens are presented, including new expressions for the deflection, potential, shear and magnification, which naturally lead to a fast numerical scheme for practical calculation. The main part of the thesis investigates lens reconstruction with extended sources by means of the forward reconstruction method, in which the lenses and sources are given by parametric models. The numerical realities of the problem make it necessary to find targeted optimisations for the forward method, in order to make it feasible for general applications to modern, high resolution images. The result of these optimisations is presented in the \textsc{Lensed} algorithm. Subsequently, a number of tests for general forward reconstruction methods are created to decouple the influence of sourced from lens reconstructions, in order to objectively demonstrate the constraining power of the reconstruction. The final chapters on lens reconstruction contain two sample applications of the forward method. One is the analysis of images from a strong lensing survey. Such surveys today contain $\sim 100$ strong lenses, and much larger sample sizes are expected in the future, making it necessary to quickly and reliably analyse catalogues of lenses with a fixed model. The second application deals with the opposite situation of a single observation that is to be confronted with different lens models, where the forward method allows for natural model-building. This is demonstrated using an example reconstruction of the ``Cosmic Horseshoe''. An appendix presents an independent work on the use of weak gravitational lensing to investigate theories of modified gravity which exhibit screening in the non-linear regime of structure formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We start in Chapter 2 to investigate linear matrix-valued SDEs and the Itô-stochastic Magnus expansion. The Itô-stochastic Magnus expansion provides an efficient numerical scheme to solve matrix-valued SDEs. We show convergence of the expansion up to a stopping time τ and provide an asymptotic estimate of the cumulative distribution function of τ. Moreover, we show how to apply it to solve SPDEs with one and two spatial dimensions by combining it with the method of lines with high accuracy. We will see that the Magnus expansion allows us to use GPU techniques leading to major performance improvements compared to a standard Euler-Maruyama scheme. In Chapter 3, we study a short-rate model in a Cox-Ingersoll-Ross (CIR) framework for negative interest rates. We define the short rate as the difference of two independent CIR processes and add a deterministic shift to guarantee a perfect fit to the market term structure. We show how to use the Gram-Charlier expansion to efficiently calibrate the model to the market swaption surface and price Bermudan swaptions with good accuracy. We are taking two different perspectives for rating transition modelling. In Section 4.4, we study inhomogeneous continuous-time Markov chains (ICTMC) as a candidate for a rating model with deterministic rating transitions. We extend this model by taking a Lie group perspective in Section 4.5, to allow for stochastic rating transitions. In both cases, we will compare the most popular choices for a change of measure technique and show how to efficiently calibrate both models to the available historical rating data and market default probabilities. At the very end, we apply the techniques shown in this thesis to minimize the collateral-inclusive Credit/ Debit Valuation Adjustments under the constraint of small collateral postings by using a collateral account dependent on rating trigger.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.