2 resultados para MAGMATIC PROCESSES
em AMS Tesi di Dottorato - Alm@DL - Universit
Resumo:
Forecasting the time, location, nature, and scale of volcanic eruptions is one of the most urgent aspects of modern applied volcanology. The reliability of probabilistic forecasting procedures is strongly related to the reliability of the input information provided, implying objective criteria for interpreting the historical and monitoring data. For this reason both, detailed analysis of past data and more basic research into the processes of volcanism, are fundamental tasks of a continuous information-gain process; in this way the precursor events of eruptions can be better interpreted in terms of their physical meanings with correlated uncertainties. This should lead to better predictions of the nature of eruptive events. In this work we have studied different problems associated with the long- and short-term eruption forecasting assessment. First, we discuss different approaches for the analysis of the eruptive history of a volcano, most of them generally applied for long-term eruption forecasting purposes; furthermore, we present a model based on the characteristics of a Brownian passage-time process to describe recurrent eruptive activity, and apply it for long-term, time-dependent, eruption forecasting (Chapter 1). Conversely, in an effort to define further monitoring parameters as input data for short-term eruption forecasting in probabilistic models (as for example, the Bayesian Event Tree for eruption forecasting -BET_EF-), we analyze some characteristics of typical seismic activity recorded in active volcanoes; in particular, we use some methodologies that may be applied to analyze long-period (LP) events (Chapter 2) and volcano-tectonic (VT) seismic swarms (Chapter 3); our analysis in general are oriented toward the tracking of phenomena that can provide information about magmatic processes. Finally, we discuss some possible ways to integrate the results presented in Chapters 1 (for long-term EF), 2 and 3 (for short-term EF) in the BET_EF model (Chapter 4).
Resumo:
This is a multidisciplinary study of the Brown Tuffs (BT) ash deposits of the Aeolian Islands in northern Sicily and representing the most voluminous and widely distributed tephra deposit in this region. A large dataset of major and minor elements of the BT glass has defined a range from K-series basaltic-andesites and trachy-andesites through to tephri-phonolites and trachytes that is consistent with the Vulcano magmatic system. Combined with stratigraphic information and new radiocarbon ages, four stratigraphic macro-units are defined: the Lower (80-56 ky; LBT), Intermediate (56-27 ky; IBT), Intermediate-upper (26-24 ky; IBT-upper) and Upper BT (24-6 ky; UBT). Glass compositional data provide constraints on proximal-distal correlations of the BT with deep-sea tephra layers in the Tyrrhenian and Adriatic Seas and new insights on the definition of the dispersal area of the BT eruptions. Sedimentological evidence of massive to stratified deposits and shear-related structures, coupled with grain-size and componentry analyses, have allowed to interpret the BT as the result of laterally-spreading, concentrated ash-rich PDCs, with a high potential of erosion of the substratum. Shear-structures similar to those observed in the field in the BT deposits have been reproduced by small-medium scale laboratory experiments carried out on ash granular flows, which have also allowed to describe the behaviour of ash-rich PDcs and their mobility depending on variations of slope-ratio, grain size and flow channelization. The resulting integrated dataset provides a contribution to the knowledge of the BT eruptions and insights on long-term hazard assessment in the study area. The eruptive dynamics of the BT may have a role in characterizing the whole magmatic system of the La Fossa Caldera on Vulcano, in the light of the geochemical link highlighted between the UBT macrounit and the early products of the La Fossa cone.