13 resultados para Local and remote sensors
em AMS Tesi di Dottorato - Alm@DL - Universit
Resumo:
Precipitation retrieval over high latitudes, particularly snowfall retrieval over ice and snow, using satellite-based passive microwave spectrometers, is currently an unsolved problem. The challenge results from the large variability of microwave emissivity spectra for snow and ice surfaces, which can mimic, to some degree, the spectral characteristics of snowfall. This work focuses on the investigation of a new snowfall detection algorithm specific for high latitude regions, based on a combination of active and passive sensors able to discriminate between snowing and non snowing areas. The space-borne Cloud Profiling Radar (on CloudSat), the Advanced Microwave Sensor units A and B (on NOAA-16) and the infrared spectrometer MODIS (on AQUA) have been co-located for 365 days, from October 1st 2006 to September 30th, 2007. CloudSat products have been used as truth to calibrate and validate all the proposed algorithms. The methodological approach followed can be summarised into two different steps. In a first step, an empirical search for a threshold, aimed at discriminating the case of no snow, was performed, following Kongoli et al. [2003]. This single-channel approach has not produced appropriate results, a more statistically sound approach was attempted. Two different techniques, which allow to compute the probability above and below a Brightness Temperature (BT) threshold, have been used on the available data. The first technique is based upon a Logistic Distribution to represent the probability of Snow given the predictors. The second technique, defined Bayesian Multivariate Binary Predictor (BMBP), is a fully Bayesian technique not requiring any hypothesis on the shape of the probabilistic model (such as for instance the Logistic), which only requires the estimation of the BT thresholds. The results obtained show that both methods proposed are able to discriminate snowing and non snowing condition over the Polar regions with a probability of correct detection larger than 0.5, highlighting the importance of a multispectral approach.
Resumo:
This doctoral work gains deeper insight into the dynamics of knowledge flows within and across clusters, unfolding their features, directions and strategic implications. Alliances, networks and personnel mobility are acknowledged as the three main channels of inter-firm knowledge flows, thus offering three heterogeneous measures to analyze the phenomenon. The interplay between the three channels and the richness of available research methods, has allowed for the elaboration of three different papers and perspectives. The common empirical setting is the IT cluster in Bangalore, for its distinguished features as a high-tech cluster and for its steady yearly two-digit growth around the service-based business model. The first paper deploys both a firm-level and a tie-level analysis, exploring the cases of 4 domestic companies and of 2 MNCs active the cluster, according to a cluster-based perspective. The distinction between business-domain knowledge and technical knowledge emerges from the qualitative evidence, further confirmed by quantitative analyses at tie-level. At firm-level, the specialization degree seems to be influencing the kind of knowledge shared, while at tie-level both the frequency of interaction and the governance mode prove to determine differences in the distribution of knowledge flows. The second paper zooms out and considers the inter-firm networks; particularly focusing on the role of cluster boundary, internal and external networks are analyzed, in their size, long-term orientation and exploration degree. The research method is purely qualitative and allows for the observation of the evolving strategic role of internal network: from exploitation-based to exploration-based. Moreover, a causal pattern is emphasized, linking the evolution and features of the external network to the evolution and features of internal network. The final paper addresses the softer and more micro-level side of knowledge flows: personnel mobility. A social capital perspective is here developed, which considers both employees’ acquisition and employees’ loss as building inter-firm ties, thus enhancing company’s overall social capital. Negative binomial regression analyses at dyad-level test the significant impact of cluster affiliation (cluster firms vs non-cluster firms), industry affiliation (IT firms vs non-IT fims) and foreign affiliation (MNCs vs domestic firms) in shaping the uneven distribution of personnel mobility, and thus of knowledge flows, among companies.
Resumo:
A year of satellite-borne lidar CALIOP data is analyzed and statistics on occurrence and distribution of bulk properties of cirri are provided. The relationship between environmental and cloud physical parameters and the shape of the backscatter profile (BSP) is investigated. It is found that CALIOP BSP is mainly affected by cloud geometrical thickness while only minor impacts can be attributed to other quantities such as optical depth or temperature. To fit mean BSPs as functions of geometrical thickness and position within the cloud layer, polynomial functions are provided. It is demonstrated that, under realistic hypotheses, the mean BSP is linearly proportional to the IWC profile. The IWC parameterization is included into the RT-RET retrieval algorithm, that is exploited to analyze infrared radiance measurements in presence of cirrus clouds during the ECOWAR field campaign. Retrieved microphysical and optical properties of the observed cloud are used as input parameters in a forward RT simulation run over the 100-1100 cm-1 spectral interval and compared with interferometric data to test the ability of the current single scattering properties database of ice crystal to reproduce realistic optical features. Finally a global scale investigation of cirrus clouds is performed by developing a collocation algorithm that exploits satellite data from multiple sensors (AIRS, CALIOP, MODIS). The resulting data set is utilized to test a new infrared hyperspectral retrieval algorithm. Retrieval products are compared to data and in particular the cloud top height (CTH) product is considered for this purpose. A better agreement of the retrieval with the CALIOP CTH than MODIS is found, even if some cases of underestimation and overestimation are observed.
Resumo:
Wearable inertial and magnetic measurements units (IMMU) are an important tool for underwater motion analysis because they are swimmer-centric, they require only simple measurement set-up and they provide the performance results very quickly. In order to estimate 3D joint kinematics during motion, protocols were developed to transpose the IMMU orientation estimation to a biomechanical model. The aim of the thesis was to validate a protocol originally propositioned to estimate the joint angles of the upper limbs during one-degree-of-freedom movements in dry settings and herein modified to perform 3D kinematics analysis of shoulders, elbows and wrists during swimming. Eight high-level swimmers were assessed in the laboratory by means of an IMMU while simulating the front crawl and breaststroke movements. A stereo-photogrammetric system (SPS) was used as reference. The joint angles (in degrees) of the shoulders (flexion-extension, abduction-adduction and internal-external rotation), the elbows (flexion-extension and pronation-supination), and the wrists (flexion-extension and radial-ulnar deviation) were estimated with the two systems and compared by means of root mean square errors (RMSE), relative RMSE, Pearson’s product-moment coefficient correlation (R) and coefficient of multiple correlation (CMC). Subsequently, the athletes were assessed during pool swimming trials through the IMMU. Considering both swim styles and all joint degrees of freedom modeled, the comparison between the IMMU and the SPS showed median values of RMSE lower than 8°, representing 10% of overall joint range of motion, high median values of CMC (0.97) and R (0.96). These findings suggest that the protocol accurately estimated the 3D orientation of the shoulders, elbows and wrists joint during swimming with accuracy adequate for the purposes of research. In conclusion, the proposed method to evaluate the 3D joint kinematics through IMMU was revealed to be a useful tool for both sport and clinical contexts.
Resumo:
The kinematics is a fundamental tool to infer the dynamical structure of galaxies and to understand their formation and evolution. Spectroscopic observations of gas emission lines are often used to derive rotation curves and velocity dispersions. It is however difficult to disentangle these two quantities in low spatial-resolution data because of beam smearing. In this thesis, we present 3D-Barolo, a new software to derive the gas kinematics of disk galaxies from emission-line data-cubes. The code builds tilted-ring models in the 3D observational space and compares them with the actual data-cubes. 3D-Barolo works with data at a wide range of spatial resolutions without being affected by instrumental biases. We use 3D-Barolo to derive rotation curves and velocity dispersions of several galaxies in both the local and the high-redshift Universe. We run our code on HI observations of nearby galaxies and we compare our results with 2D traditional approaches. We show that a 3D approach to the derivation of the gas kinematics has to be preferred to a 2D approach whenever a galaxy is resolved with less than about 20 elements across the disk. We moreover analyze a sample of galaxies at z~1, observed in the H-alpha line with the KMOS/VLT spectrograph. Our 3D modeling reveals that the kinematics of these high-z systems is comparable to that of local disk galaxies, with steeply-rising rotation curves followed by a flat part and H-alpha velocity dispersions of 15-40 km/s over the whole disks. This evidence suggests that disk galaxies were already fully settled about 7-8 billion years ago. In summary, 3D-Barolo is a powerful and robust tool to separate physical and instrumental effects and to derive a reliable kinematics. The analysis of large samples of galaxies at different redshifts with 3D-Barolo will provide new insights on how galaxies assemble and evolve throughout cosmic time.
Resumo:
The primary aim of the research activity presented in this PhD thesis was the development of an innovative hardware and software solution for creating a unique tool for kinematics and electromyographic analysis of the human body in an ecological setting. For this purpose, innovative algorithms have been proposed regarding different aspects of inertial and magnetic data elaboration: magnetometer calibration and magnetic field mapping (Chapter 2), data calibration (Chapter 3) and sensor-fusion algorithm. Topics that may conflict with the confidentiality agreement between University of Bologna and NCS Lab will not be covered in this thesis. After developing and testing the wireless platform, research activities were focused on its clinical validation. The first clinical study aimed to evaluate the intra and interobserver reproducibility in order to evaluate three-dimensional humero-scapulo-thoracic kinematics in an outpatient setting (Chapter 4). A second study aimed to evaluate the effect of Latissimus Dorsi Tendon Transfer on shoulder kinematics and Latissimus Dorsi activation in humerus intra - extra rotations (Chapter 5). Results from both clinical studies have demonstrated the ability of the developed platform to enter into daily clinical practice, providing useful information for patients' rehabilitation.
Resumo:
Snow plays a crucial role in the Earth's hydrological cycle and energy budget, making its monitoring necessary. In this context, ground-based radars and in situ instruments are essential thanks to their spatial coverage, resolution, and temporal sampling. Deep understanding and reliable measurements of snow properties are crucial over Antarctica to assess potential future changes of the surface mass balance (SMB) and define the contribution of the Antarctic ice sheet on sea-level rise. However, despite its key role, Antarctic precipitation is poorly investigated due to the continent's inaccessibility and extreme environment. In this framework, this Thesis aims to contribute to filling this gap by in-depth characterization of Antarctic precipitation at the Mario Zucchelli station from different points of view: microphysical features, quantitative precipitation estimation (QPE), vertical structure of precipitation, and scavenging properties. For this purpose, a K-band vertically pointing radar collocated with a laser disdrometer and an optical particle counter (OPC) were used. The radar probed the lowest atmospheric layers with high vertical resolution, allowing the first trusted measurement at only 105 m height. Disdrometer and OPC provided information on the particle size distribution and aerosol concentrations. An innovative snow classification methodology was designed by comparing the radar reflectivity (Ze) and disdrometer-derived reflectivity by means of DDA simulations. Results of classification were exploited in QPE through appropriate Ze-snow rate relationships. The accuracy of the resulting QPE was benchmarked against a collocated weighing gauge. Vertical radar profiles were also investigated to highlight hydrometeors' sublimation and growth processes. Finally, OPC and disdrometer data allowed providing the first-ever estimates of scavenging properties of Antarctic snowfall. Results presented in this Thesis give rise to advances in knowledge of the characteristics of snowfall in Antarctica, contributing to a better assessment of the SMB of the Antarctic ice sheet, the major player in the global sea-level rise.
Resumo:
A general description of the work presented in this thesis can be divided into three areas of interest: micropore fabrication, nanopore modification, and their applications. The first part of the thesis is related to the novel, reliable, cost-effective, potable, mass-productive, robust, and ease of use micropore flowcell that works based on the RPS technique. Based on our first goal, which was finding an alternate materials and processes that would shorten production times while lowering costs and improving signal quality, the polyimide film was used as a substrate to create precise pores by femtosecond laser, and the resulting current blockades of different sizes of the nanoparticles were recorded. Based on the results, the device can detecting nano-sized particles by changing the current level. The experimental and theoretical investigation, scanning electron microscopy, and focus ion beam were performed to explain the micropore's performance. The second goal was design and fabrication of a leak-free, easy-to-assemble, and portable polymethyl methacrylate flowcell for nanopore experiments. Here, ion current rectification was studied in our nanodevice. We showed a self-assembly-based, controllable, and monitorable in situ Poly(l-lysine)- g-poly(ethylene glycol) coating method under voltage-driven electrolyte flow and electrostatic interaction between nanopore walls and PLL backbones. Using designed nanopore flowcell and in situ monolayer PLL-g-PEG functionalized 20±4 nm SiN nanopores, we observed non-sticky α-1 anti-trypsin protein translocation. additionally, we could show the enhancement of translocation events through this non-sticky nanopore, and also, estimate the volume of the translocated protein. In this study, by comparing the AAT protein translocation results from functionalized and non-functionalized nanopore we demonstrated the 105 times dwell time reduction (31-0.59ms), 25% amplitude enhancement (0.24-0.3 nA), and 15 times event’s number increase (1-15events/s) after functionalization in 1×PBS at physiological pH. Also, the AAT protein volume was measured, close to the calculated AAT protein hydrodynamic volume and previous reports.
Resumo:
To continuously improve the performance of metal-oxide-semiconductor field-effect-transistors (MOSFETs), innovative device architectures, gate stack engineering and mobility enhancement techniques are under investigation. In this framework, new physics-based models for Technology Computer-Aided-Design (TCAD) simulation tools are needed to accurately predict the performance of upcoming nanoscale devices and to provide guidelines for their optimization. In this thesis, advanced physically-based mobility models for ultrathin body (UTB) devices with either planar or vertical architectures such as single-gate silicon-on-insulator (SOI) field-effect transistors (FETs), double-gate FETs, FinFETs and silicon nanowire FETs, integrating strain technology and high-κ gate stacks are presented. The effective mobility of the two-dimensional electron/hole gas in a UTB FETs channel is calculated taking into account its tensorial nature and the quantization effects. All the scattering events relevant for thin silicon films and for high-κ dielectrics and metal gates have been addressed and modeled for UTB FETs on differently oriented substrates. The effects of mechanical stress on (100) and (110) silicon band structures have been modeled for a generic stress configuration. Performance will also derive from heterogeneity, coming from the increasing diversity of functions integrated on complementary metal-oxide-semiconductor (CMOS) platforms. For example, new architectural concepts are of interest not only to extend the FET scaling process, but also to develop innovative sensor applications. Benefiting from properties like large surface-to-volume ratio and extreme sensitivity to surface modifications, silicon-nanowire-based sensors are gaining special attention in research. In this thesis, a comprehensive analysis of the physical effects playing a role in the detection of gas molecules is carried out by TCAD simulations combined with interface characterization techniques. The complex interaction of charge transport in silicon nanowires of different dimensions with interface trap states and remote charges is addressed to correctly reproduce experimental results of recently fabricated gas nanosensors.
Resumo:
During my Doctoral study I researched about the remote detection of canopy N concentration in forest stands, its potentials and problems, under many overlapping perspectives. The study consisted of three parts. In S. Rossore 2000 dataset analysis, I tested regressions between N concentration and NIR reflectances derived from different sources (field samples, airborne and satellite sensors). The analysis was further expanded using a larger dataset acquired in year 2009 as part of a new campaign funded by the ESA. In both cases, a good correlation was observed between Landsat NIR, using both TM (2009) and ETM+ (2000) imagery, and N concentration measured by a CHN elemental analyzer. Concerning airborne sensors I did not obtain the same good results, mainly because of the large FOV of the two instruments, and to the anisotropy of vegetation reflectance. We also tested the relation between ground based ASD measures and nitrogen concentration, obtaining really good results. Thus, I decided to expand my study to the regional level, focusing only on field and satellite measures. I analyzed a large dataset for the whole of Catalonia, Spain; MODIS imagery was used, in consideration of its spectral characteristics and despite its rather poor spatial resolution. Also in this case a regression between nitrogen concentration and reflectances was found, but not so good as in previous experiences. Moreover, vegetation type was found to play an important role in the observed relationship. We concluded that MODIS is not the most suitable satellite sensor in realities like Italy and Catalonia, which present a patchy and inhomogeneous vegetation cover; so it could be utilized for the parameterization of eco-physiological and biogeochemical models, but not for really local nitrogen estimate. Thus multispectral sensors similar to Landsat Thematic Mapper, with better spatial resolution, could be the most appropriate sensors to estimate N concentration.
Resumo:
A growing number of empirical studies recently investigated consumers' valuation for local food products. However, different aspects related to the local food consumption still remain vague or unexplored. As such, the objective of the present research is to fulfill the existing literature using a mixed methodological approach for the investigation of consumers' preferences and Willingness to Pay (WTP) for local food products. First of all, local food is still a blurred concept and this factor might be source of individuals' misperception for the local origin meaning. Therefore, a qualitative research has been performed in order to investigate the meaning and the perception of the local food in the Italian food market. Results from this analysis have been used as inputs for the building of a non-hypothetical Real Choice Experiment (RCE) to estimate consumers' WTP for locally and organically produced apple sauce. The contribution of this study is three-fold: (1) consumers' valuation for the local origin is interpreted in terms of regional borders, over the organic food claim in case of an unusual food product in the area of interest, (2) the interaction between individuals' personality traits and consumers’ preferences for local and organic foods is analyzed, (3) the role of Commitment Cost creation in consumers' choice making in case of uncertainty due to the use of a novel food product and of an unconventional food claim is investigated. Results suggest that consumers are willing to pay a higher price premium for organic over locally produced apple sauce, possibly because of the presence of a regulated certification. In accordance with Commitment Cost theory, the organic label might thus decrease consumers' uncertainty for the features of the product in question. Results also indicate that individuals' personality can be source of heterogeneity in consumers' preferences.
Resumo:
The main goal of the Airborne project is to develop, at technology readiness level 8 (TRL8), a few selected robotic aerial technologies for quick localization of victims by avalanches by equipping drones with two forefront sensors used in SAR operations in case of avalanches, namely the ARVA and RECCO. This thesis focuses on the design, development, and guidance of the TRL8 quadrotor developed during the project. We present and describe the design method that allowed us to obtain an EMI shielded UAV capable of integrating both RECCO and ARVA sensors. Besides, is presented the avionics and power train design and building procedure in order to obtain a modular UAV frame that can be easily carried by rescuers and achieves all the performance benchmarks of the project. Additionally, in addition to the onboard algorithms, a multivariate regressive convolutional neural network whose goal is the localization of the ARVA signal is presented. On guidance, the automatic flight procedure is described, and the onboard waypoint generator algorithm is presented. The goal of this algorithm is the generation and execution of an automatic grid pattern without the need to know the map in advance and without the support of a control ground station (CGS). Moreover, we present an iterative trajectory planner that does not need pre-knowledge of the map and uses Bézier curves to address optimal, dynamically feasible, safe, and re-plannable trajectories. The goal is to develop a method that allows local and fast replannings in case of an obstacle pop up or if some waypoints change. This makes the novel planner suitable to be applied in SAR operations. The introduction of the final version of the quadrotor is supported by internal flight tests and field tests performed in real operative scenarios by the Club Alpino Italiano (CAI).
Resumo:
Wearable electronic textiles are an emerging research field playing a pivotal role among several different technological areas such as sensing, communication, clothing, health monitoring, information technology, and microsystems. The possibility to realise a fully-textile platform, endowed with various sensors directly realised with textile fibres and fabric, represents a new challenge for the entire research community. Among several high-performing materials, the intrinsically conductive poly(3,4-ethylenedioxythiophene) (PEDOT), doped with poly(styrenesulfonic acid) (PSS), or PEDOT:PSS, is one of the most representative and utilised, having an excellent chemical and thermal stability, as well as reversible doping state and high conductivity. This work relies on PEDOT:PSS combined with sensible materials to design, realise, and develop textile chemical and physical sensors. In particular, chloride concentration and pH level sensors in human sweat for continuous monitoring of the wearer's hydration status and stress level are reported. Additionally, a prototype smart bandage detecting the moisture level and pH value of a bed wound to allow the remote monitoring of the healing process of severe and chronic wounds is described. Physical sensors used to monitor the pressure distribution for rehabilitation, workplace safety, or sport tracking are also presented together with a novel fully-textile device able to measure the incident X-ray dose for medical or security applications where thin, comfortable, and flexible features are essential. Finally, a proof-of-concept for an organic-inorganic textile thermoelectric generator that harvests energy directly from body heat has been proposed. Though further efforts must be dedicated to overcome issues such as durability, washability, power consumption, and large-scale production, the novel, versatile, and widely encompassing area of electronic textiles is a promising protagonist in the upcoming technological revolution.