3 resultados para Larval periods
em AMS Tesi di Dottorato - Alm@DL - Universit
Resumo:
The species of the genus Coenosia Meigen are polyphagous predators both in the larval and in the adult stage. In Europe five Coenosia species of the ‘tigrina group’ are naturally present in greenhouses, where they can establish for long periods. As their wide preys range includes important pests of protected crops, as Aleyrodidae, Sciaridae and Agromyzidae, Coenosia species are considered promising potential biological control agents. A method for rearing Coenosia species in vivo was developed for the first time in 1993 in Germany, where C. attenuata, C. strigipes and C. humilis were bred on Bradysia paupera (Diptera Sciaridae), reared on Fusarium spp. cultivated on wood fibre. Although this method was partially simplified afterwards, it is still too complex and expensive for a mass production. This research aimed at simplifying this rearing procedure and making it cheaper, in the perspective of an eventual mass production. Studies on potential preys were conducted, to determine their suitability for C. attenuata larvae and adults and to develop rearing methods. Biology and rearing methods of Bradysia paupera Tuomikoski, Scatella stagnalis Fallén and Drosophila melanogaster Meigen (Diptera: Sciaridae, Ephydridae, Drosophilidae) were compared. B. paupera resulted the most suitable prey for rearing C. attenuata in vivo. The Sciarid fly was effectively reared on damp coconut fibre with fresh Agaricus bisporus (J.E. Lange) Pilát, thus simplifying the existing method. After preliminary trials with different potential preys, attempts to rear C. attenuata in vivo on B. paupera and D. melanogaster were made. The best results were obtained with B. paupera, reared on coconut fibre and A. bisporus, but the method needs further improvement. Trials of in vitro rearing of C. attenuata were also made: as no specific diet for Coenosia species is reported in literature, different potentially suitable media were tested. Among these, a specific diet for Diptera Tachinidae resulted a good starting point for further studies and improvements. The biology of C. attenuata adults captured in greenhouses was also studied, by observing both groups and isolated individuals. Data on lifespan, daily number of preys per adult, daily number of laid eggs and hatching rate were recorded, and the effects of different foods on these parameters were analyzed. The following foods were compared: D. melanogaster adults only, as preys for C. attenuata; D. melanogaster adults and a water-honey solution; the water-honey solution only. Honey resulted an effective food integration for C. attenuata, increasing lifespan and the number of egg laying females. It is possible that in greenhouses Coenosia adults complete the preys diet with nectar and/or honeydew. Moreover, the integration with honey reduced the daily preys consumption. This may allow to prevent cannibalism among Coenosia adults in the rearing conditions, where high population densities are required. A survey of the Coenosia species naturally present in Lombardy greenhouses was conducted. The species C. attenuata, C. strigipes, C. tigrina and C. atra were detected. C. attenuata resulted the most common, recorded in most greenhouses and for consecutive years. Besides, the presence of potential preys, weeds and the crops were recorded in each greenhouse. Nevertheless, it is difficult to determine the relation between these parameters and the presence of Coenosia species.
Resumo:
As a large and long-lived species with high economic value, restricted spawning areas and short spawning periods, the Atlantic bluefin tuna (BFT; Thunnus thynnus) is particularly susceptible to over-exploitation. Although BFT have been targeted by fisheries in the Mediterranean Sea for thousands of years, it has only been in these last decades that the exploitation rate has reached far beyond sustainable levels. An understanding of the population structure, spatial dynamics, exploitation rates and the environmental variables that affect BFT is crucial for the conservation of the species. The aims of this PhD project were 1) to assess the accuracy of larval identification methods, 2) determine the genetic structure of modern BFT populations, 3) assess the self-recruitment rate in the Gulf of Mexico and Mediterranean spawning areas, 4) estimate the immigration rate of BFT to feeding aggregations from the various spawning areas, and 5) develop tools capable of investigating the temporal stability of population structuring in the Mediterranean Sea. Several weaknesses in modern morphology-based taxonomy including demographic decline of expert taxonomists, flawed identification keys, reluctance of the taxonomic community to embrace advances in digital communications and a general scarcity of modern user-friendly materials are reviewed. Barcoding of scombrid larvae revealed important differences in the accuracy of the taxonomic identifications carried out by different ichthyoplanktologists following morphology-based methods. Using a Genotyping-by-Sequencing a panel of 95 SNPs was developed and used to characterize the population structuring of BFT and composition of adult feeding aggregations. Using novel molecular techniques, DNA was extracted from bluefin tuna vertebrae excavated from late iron age, ancient roman settlements Byzantine-era Constantinople and a 20th century collection. A second panel of 96 SNPs was developed to genotype historical and modern samples in order to elucidate changes in population structuring and allele frequencies of loci associated with selective traits.
Resumo:
The present work aims at reconstructing the archaeological contexts and analyzing the material culture of the site of Europos. This archaeological site is located in southern Turkey, at the border with Syria, along the right shore of the Euphrates River. The Classical city rose above the remains of the Hittite Karkemish. The present work collects the results of the archaeological expeditions launched by the British Museum in the late 19th and early 20th century, never published, and the ones of the new Turco-Italian Joint Expedition, started in 2011. Europos had an uninterrupted life from the 3rd century BC to the 10th century AD, throughout the Hellenistic, Roman and Byzantine periods, all examined in the present work.