5 resultados para Decision tree method

em AMS Tesi di Dottorato - Alm@DL - Universit


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we aim to propose a new approach for preliminary epidemiological studies on Standardized Mortality Ratios (SMR) collected in many spatial regions. A preliminary study on SMRs aims to formulate hypotheses to be investigated via individual epidemiological studies that avoid bias carried on by aggregated analyses. Starting from collecting disease counts and calculating expected disease counts by means of reference population disease rates, in each area an SMR is derived as the MLE under the Poisson assumption on each observation. Such estimators have high standard errors in small areas, i.e. where the expected count is low either because of the low population underlying the area or the rarity of the disease under study. Disease mapping models and other techniques for screening disease rates among the map aiming to detect anomalies and possible high-risk areas have been proposed in literature according to the classic and the Bayesian paradigm. Our proposal is approaching this issue by a decision-oriented method, which focus on multiple testing control, without however leaving the preliminary study perspective that an analysis on SMR indicators is asked to. We implement the control of the FDR, a quantity largely used to address multiple comparisons problems in the eld of microarray data analysis but which is not usually employed in disease mapping. Controlling the FDR means providing an estimate of the FDR for a set of rejected null hypotheses. The small areas issue arises diculties in applying traditional methods for FDR estimation, that are usually based only on the p-values knowledge (Benjamini and Hochberg, 1995; Storey, 2003). Tests evaluated by a traditional p-value provide weak power in small areas, where the expected number of disease cases is small. Moreover tests cannot be assumed as independent when spatial correlation between SMRs is expected, neither they are identical distributed when population underlying the map is heterogeneous. The Bayesian paradigm oers a way to overcome the inappropriateness of p-values based methods. Another peculiarity of the present work is to propose a hierarchical full Bayesian model for FDR estimation in testing many null hypothesis of absence of risk.We will use concepts of Bayesian models for disease mapping, referring in particular to the Besag York and Mollié model (1991) often used in practice for its exible prior assumption on the risks distribution across regions. The borrowing of strength between prior and likelihood typical of a hierarchical Bayesian model takes the advantage of evaluating a singular test (i.e. a test in a singular area) by means of all observations in the map under study, rather than just by means of the singular observation. This allows to improve the power test in small areas and addressing more appropriately the spatial correlation issue that suggests that relative risks are closer in spatially contiguous regions. The proposed model aims to estimate the FDR by means of the MCMC estimated posterior probabilities b i's of the null hypothesis (absence of risk) for each area. An estimate of the expected FDR conditional on data (\FDR) can be calculated in any set of b i's relative to areas declared at high-risk (where thenull hypothesis is rejected) by averaging the b i's themselves. The\FDR can be used to provide an easy decision rule for selecting high-risk areas, i.e. selecting as many as possible areas such that the\FDR is non-lower than a prexed value; we call them\FDR based decision (or selection) rules. The sensitivity and specicity of such rule depend on the accuracy of the FDR estimate, the over-estimation of FDR causing a loss of power and the under-estimation of FDR producing a loss of specicity. Moreover, our model has the interesting feature of still being able to provide an estimate of relative risk values as in the Besag York and Mollié model (1991). A simulation study to evaluate the model performance in FDR estimation accuracy, sensitivity and specificity of the decision rule, and goodness of estimation of relative risks, was set up. We chose a real map from which we generated several spatial scenarios whose counts of disease vary according to the spatial correlation degree, the size areas, the number of areas where the null hypothesis is true and the risk level in the latter areas. In summarizing simulation results we will always consider the FDR estimation in sets constituted by all b i's selected lower than a threshold t. We will show graphs of the\FDR and the true FDR (known by simulation) plotted against a threshold t to assess the FDR estimation. Varying the threshold we can learn which FDR values can be accurately estimated by the practitioner willing to apply the model (by the closeness between\FDR and true FDR). By plotting the calculated sensitivity and specicity (both known by simulation) vs the\FDR we can check the sensitivity and specicity of the corresponding\FDR based decision rules. For investigating the over-smoothing level of relative risk estimates we will compare box-plots of such estimates in high-risk areas (known by simulation), obtained by both our model and the classic Besag York Mollié model. All the summary tools are worked out for all simulated scenarios (in total 54 scenarios). Results show that FDR is well estimated (in the worst case we get an overestimation, hence a conservative FDR control) in small areas, low risk levels and spatially correlated risks scenarios, that are our primary aims. In such scenarios we have good estimates of the FDR for all values less or equal than 0.10. The sensitivity of\FDR based decision rules is generally low but specicity is high. In such scenario the use of\FDR = 0:05 or\FDR = 0:10 based selection rule can be suggested. In cases where the number of true alternative hypotheses (number of true high-risk areas) is small, also FDR = 0:15 values are well estimated, and \FDR = 0:15 based decision rules gains power maintaining an high specicity. On the other hand, in non-small areas and non-small risk level scenarios the FDR is under-estimated unless for very small values of it (much lower than 0.05); this resulting in a loss of specicity of a\FDR = 0:05 based decision rule. In such scenario\FDR = 0:05 or, even worse,\FDR = 0:1 based decision rules cannot be suggested because the true FDR is actually much higher. As regards the relative risk estimation, our model achieves almost the same results of the classic Besag York Molliè model. For this reason, our model is interesting for its ability to perform both the estimation of relative risk values and the FDR control, except for non-small areas and large risk level scenarios. A case of study is nally presented to show how the method can be used in epidemiology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary aim of this dissertation to identify subgroups of patients with chronic kidney disease (CKD) who have a differential risk of progression of illness and the secondary aim is compare 2 equations to estimate the glomerular filtration rate (GFR). To this purpose, the PIRP (Prevention of Progressive Kidney Disease) registry was linked with the dialysis and mortality registries. The outcome of interest is the mean annual variation of GFR, estimated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. A decision tree model was used to subtype CKD patients, based on the non-parametric procedure CHAID (Chi-squared Automatic Interaction Detector). The independent variables of the model include gender, age, diabetes, hypertension, cardiac diseases, body mass index, baseline serum creatinine, haemoglobin, proteinuria, LDL cholesterol, tryglycerides, serum phoshates, glycemia, parathyroid hormone and uricemia. The decision tree model classified patients into 10 terminal nodes using 6 variables (gender, age, proteinuria, diabetes, serum phosphates and ischemic cardiac disease) that predict a differential progression of kidney disease. Specifically, age <=53 year, male gender, proteinuria, diabetes and serum phosphates >3.70 mg/dl predict a faster decrease of GFR, while ischemic cardiac disease predicts a slower decrease. The comparison between GFR estimates obtained using MDRD4 and CKD-EPI equations shows a high percentage agreement (>90%), with modest discrepancies for high and low age and serum creatinine levels. The study results underscore the need for a tight follow-up schedule in patients with age <53, and of patients aged 54 to 67 with diabetes, to try to slow down the progression of the disease. The result also emphasize the effective management of patients aged>67, in whom the estimated decrease in glomerular filtration rate corresponds with the physiological decrease observed in the absence of kidney disease, except for the subgroup of patients with proteinuria, in whom the GFR decline is more pronounced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal flooding poses serious threats to coastal areas around the world, billions of dollars in damage to property and infrastructure, and threatens the lives of millions of people. Therefore, disaster management and risk assessment aims at detecting vulnerability and capacities in order to reduce coastal flood disaster risk. In particular, non-specialized researchers, emergency management personnel, and land use planners require an accurate, inexpensive method to determine and map risk associated with storm surge events and long-term sea level rise associated with climate change. This study contributes to the spatially evaluation and mapping of social-economic-environmental vulnerability and risk at sub-national scale through the development of appropriate tools and methods successfully embedded in a Web-GIS Decision Support System. A new set of raster-based models were studied and developed in order to be easily implemented in the Web-GIS framework with the purpose to quickly assess and map flood hazards characteristics, damage and vulnerability in a Multi-criteria approach. The Web-GIS DSS is developed recurring to open source software and programming language and its main peculiarity is to be available and usable by coastal managers and land use planners without requiring high scientific background in hydraulic engineering. The effectiveness of the system in the coastal risk assessment is evaluated trough its application to a real case study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decades, global food supply chains had to deal with the increasing awareness of the stakeholders and consumers about safety, quality, and sustainability. In order to address these new challenges for food supply chain systems, an integrated approach to design, control, and optimize product life cycle is required. Therefore, it is essential to introduce new models, methods, and decision-support platforms tailored to perishable products. This thesis aims to provide novel practice-ready decision-support models and methods to optimize the logistics of food items with an integrated and interdisciplinary approach. It proposes a comprehensive review of the main peculiarities of perishable products and the environmental stresses accelerating their quality decay. Then, it focuses on top-down strategies to optimize the supply chain system from the strategical to the operational decision level. Based on the criticality of the environmental conditions, the dissertation evaluates the main long-term logistics investment strategies to preserve products quality. Several models and methods are proposed to optimize the logistics decisions to enhance the sustainability of the supply chain system while guaranteeing adequate food preservation. The models and methods proposed in this dissertation promote a climate-driven approach integrating climate conditions and their consequences on the quality decay of products in innovative models supporting the logistics decisions. Given the uncertain nature of the environmental stresses affecting the product life cycle, an original stochastic model and solving method are proposed to support practitioners in controlling and optimizing the supply chain systems when facing uncertain scenarios. The application of the proposed decision-support methods to real case studies proved their effectiveness in increasing the sustainability of the perishable product life cycle. The dissertation also presents an industry application of a global food supply chain system, further demonstrating how the proposed models and tools can be integrated to provide significant savings and sustainability improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis is to investigate a field that until a few years ago was foreign to and distant from the penal system. The purpose of this undertaking is to account for the role that technology could plays in the Italian Criminal Law system. More specifically, this thesis attempts to scrutinize a very intricate phase of adjudication. After deciding on the type of an individual's liability, a judge must decide on the severity of the penalty. This type of decision implies a prognostic assessment that looks to the future. It is precisely in this field and in prognostic assessments that, as has already been anticipated in the United, instruments and processes are inserted in the pre-trial but also in the decision-making phase. In this contribution, we attempt to describe the current state of this field, trying, as a matter of method, to select the most relevant or most used tools. Using comparative and qualitative methods, the uses of some of these instruments in the supranational legal system are analyzed. Focusing attention on the Italian system, an attempt was made to investigate the nature of the element of an individual's ‘social dangerousness’ (pericolosità sociale) and capacity to commit offences, types of assessments that are fundamental in our system because they are part of various types of decisions, including the choice of the best sanctioning treatment. It was decided to turn our attention to this latter field because it is believed that the judge does not always have the time, the means and the ability to assess all the elements of a subject and identify the best 'individualizing' treatment in order to fully realize the function of Article 27, paragraph 3 of the Constitution.