12 resultados para Constraint-based routing
em AMS Tesi di Dottorato - Alm@DL - Universit
Resumo:
This work presents exact algorithms for the Resource Allocation and Cyclic Scheduling Problems (RA&CSPs). Cyclic Scheduling Problems arise in a number of application areas, such as in hoist scheduling, mass production, compiler design (implementing scheduling loops on parallel architectures), software pipelining, and in embedded system design. The RA&CS problem concerns time and resource assignment to a set of activities, to be indefinitely repeated, subject to precedence and resource capacity constraints. In this work we present two constraint programming frameworks facing two different types of cyclic problems. In first instance, we consider the disjunctive RA&CSP, where the allocation problem considers unary resources. Instances are described through the Synchronous Data-flow (SDF) Model of Computation. The key problem of finding a maximum-throughput allocation and scheduling of Synchronous Data-Flow graphs onto a multi-core architecture is NP-hard and has been traditionally solved by means of heuristic (incomplete) algorithms. We propose an exact (complete) algorithm for the computation of a maximum-throughput mapping of applications specified as SDFG onto multi-core architectures. Results show that the approach can handle realistic instances in terms of size and complexity. Next, we tackle the Cyclic Resource-Constrained Scheduling Problem (i.e. CRCSP). We propose a Constraint Programming approach based on modular arithmetic: in particular, we introduce a modular precedence constraint and a global cumulative constraint along with their filtering algorithms. Many traditional approaches to cyclic scheduling operate by fixing the period value and then solving a linear problem in a generate-and-test fashion. Conversely, our technique is based on a non-linear model and tackles the problem as a whole: the period value is inferred from the scheduling decisions. The proposed approaches have been tested on a number of non-trivial synthetic instances and on a set of realistic industrial instances achieving good results on practical size problem.
Resumo:
In the last years, Intelligent Tutoring Systems have been a very successful way for improving learning experience. Many issues must be addressed until this technology can be defined mature. One of the main problems within the Intelligent Tutoring Systems is the process of contents authoring: knowledge acquisition and manipulation processes are difficult tasks because they require a specialised skills on computer programming and knowledge engineering. In this thesis we discuss a general framework for knowledge management in an Intelligent Tutoring System and propose a mechanism based on first order data mining to partially automate the process of knowledge acquisition that have to be used in the ITS during the tutoring process. Such a mechanism can be applied in Constraint Based Tutor and in the Pseudo-Cognitive Tutor. We design and implement a part of the proposed architecture, mainly the module of knowledge acquisition from examples based on first order data mining. We then show that the algorithm can be applied at least two different domains: first order algebra equation and some topics of C programming language. Finally we discuss the limitation of current approach and the possible improvements of the whole framework.
Resumo:
This thesis addresses the issue of generating texts in the style of an existing author, that also satisfy structural constraints imposed by the genre of the text. Although Markov processes are known to be suitable for representing style, they are difficult to control in order to satisfy non-local properties, such as structural constraints, that require long distance modeling. The framework of Constrained Markov Processes allows to precisely generate texts that are consistent with a corpus, while being controllable in terms of rhymes and meter. Controlled Markov processes consist in reformulating Markov processes in the context of constraint satisfaction. The thesis describes how to represent stylistic and structural properties in terms of constraints in this framework and how this approach can be used for the generation of lyrics in the style of 60 differents authors An evaluation of the desctibed method is provided by comparing it to both pure Markov and pure constraint-based approaches. Finally the thesis describes the implementation of an augmented text editor, called Perec. Perec is intended to improve creativity, by helping the user to write lyrics and poetry, exploiting the techniques presented so far.
Resumo:
A High-Performance Computing job dispatcher is a critical software that assigns the finite computing resources to submitted jobs. This resource assignment over time is known as the on-line job dispatching problem in HPC systems. The fact the problem is on-line means that solutions must be computed in real-time, and their required time cannot exceed some threshold to do not affect the normal system functioning. In addition, a job dispatcher must deal with a lot of uncertainty: submission times, the number of requested resources, and duration of jobs. Heuristic-based techniques have been broadly used in HPC systems, at the cost of achieving (sub-)optimal solutions in a short time. However, the scheduling and resource allocation components are separated, thus generates a decoupled decision that may cause a performance loss. Optimization-based techniques are less used for this problem, although they can significantly improve the performance of HPC systems at the expense of higher computation time. Nowadays, HPC systems are being used for modern applications, such as big data analytics and predictive model building, that employ, in general, many short jobs. However, this information is unknown at dispatching time, and job dispatchers need to process large numbers of them quickly while ensuring high Quality-of-Service (QoS) levels. Constraint Programming (CP) has been shown to be an effective approach to tackle job dispatching problems. However, state-of-the-art CP-based job dispatchers are unable to satisfy the challenges of on-line dispatching, such as generate dispatching decisions in a brief period and integrate current and past information of the housing system. Given the previous reasons, we propose CP-based dispatchers that are more suitable for HPC systems running modern applications, generating on-line dispatching decisions in a proper time and are able to make effective use of job duration predictions to improve QoS levels, especially for workloads dominated by short jobs.
Resumo:
This thesis intends to investigate two aspects of Constraint Handling Rules (CHR). It proposes a compositional semantics and a technique for program transformation. CHR is a concurrent committed-choice constraint logic programming language consisting of guarded rules, which transform multi-sets of atomic formulas (constraints) into simpler ones until exhaustion [Frü06] and it belongs to the declarative languages family. It was initially designed for writing constraint solvers but it has recently also proven to be a general purpose language, being as it is Turing equivalent [SSD05a]. Compositionality is the first CHR aspect to be considered. A trace based compositional semantics for CHR was previously defined in [DGM05]. The reference operational semantics for such a compositional model was the original operational semantics for CHR which, due to the propagation rule, admits trivial non-termination. In this thesis we extend the work of [DGM05] by introducing a more refined trace based compositional semantics which also includes the history. The use of history is a well-known technique in CHR which permits us to trace the application of propagation rules and consequently it permits trivial non-termination avoidance [Abd97, DSGdlBH04]. Naturally, the reference operational semantics, of our new compositional one, uses history to avoid trivial non-termination too. Program transformation is the second CHR aspect to be considered, with particular regard to the unfolding technique. Said technique is an appealing approach which allows us to optimize a given program and in more detail to improve run-time efficiency or spaceconsumption. Essentially it consists of a sequence of syntactic program manipulations which preserve a kind of semantic equivalence called qualified answer [Frü98], between the original program and the transformed ones. The unfolding technique is one of the basic operations which is used by most program transformation systems. It consists in the replacement of a procedure-call by its definition. In CHR every conjunction of constraints can be considered as a procedure-call, every CHR rule can be considered as a procedure and the body of said rule represents the definition of the call. While there is a large body of literature on transformation and unfolding of sequential programs, very few papers have addressed this issue for concurrent languages. We define an unfolding rule, show its correctness and discuss some conditions in which it can be used to delete an unfolded rule while preserving the meaning of the original program. Finally, confluence and termination maintenance between the original and transformed programs are shown. This thesis is organized in the following manner. Chapter 1 gives some general notion about CHR. Section 1.1 outlines the history of programming languages with particular attention to CHR and related languages. Then, Section 1.2 introduces CHR using examples. Section 1.3 gives some preliminaries which will be used during the thesis. Subsequentely, Section 1.4 introduces the syntax and the operational and declarative semantics for the first CHR language proposed. Finally, the methodologies to solve the problem of trivial non-termination related to propagation rules are discussed in Section 1.5. Chapter 2 introduces a compositional semantics for CHR where the propagation rules are considered. In particular, Section 2.1 contains the definition of the semantics. Hence, Section 2.2 presents the compositionality results. Afterwards Section 2.3 expounds upon the correctness results. Chapter 3 presents a particular program transformation known as unfolding. This transformation needs a particular syntax called annotated which is introduced in Section 3.1 and its related modified operational semantics !0t is presented in Section 3.2. Subsequently, Section 3.3 defines the unfolding rule and prove its correctness. Then, in Section 3.4 the problems related to the replacement of a rule by its unfolded version are discussed and this in turn gives a correctness condition which holds for a specific class of rules. Section 3.5 proves that confluence and termination are preserved by the program modifications introduced. Finally, Chapter 4 concludes by discussing related works and directions for future work.
Resumo:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.
Resumo:
In this thesis we study three combinatorial optimization problems belonging to the classes of Network Design and Vehicle Routing problems that are strongly linked in the context of the design and management of transportation networks: the Non-Bifurcated Capacitated Network Design Problem (NBP), the Period Vehicle Routing Problem (PVRP) and the Pickup and Delivery Problem with Time Windows (PDPTW). These problems are NP-hard and contain as special cases some well known difficult problems such as the Traveling Salesman Problem and the Steiner Tree Problem. Moreover, they model the core structure of many practical problems arising in logistics and telecommunications. The NBP is the problem of designing the optimum network to satisfy a given set of traffic demands. Given a set of nodes, a set of potential links and a set of point-to-point demands called commodities, the objective is to select the links to install and dimension their capacities so that all the demands can be routed between their respective endpoints, and the sum of link fixed costs and commodity routing costs is minimized. The problem is called non- bifurcated because the solution network must allow each demand to follow a single path, i.e., the flow of each demand cannot be splitted. Although this is the case in many real applications, the NBP has received significantly less attention in the literature than other capacitated network design problems that allow bifurcation. We describe an exact algorithm for the NBP that is based on solving by an integer programming solver a formulation of the problem strengthened by simple valid inequalities and four new heuristic algorithms. One of these heuristics is an adaptive memory metaheuristic, based on partial enumeration, that could be applied to a wider class of structured combinatorial optimization problems. In the PVRP a fleet of vehicles of identical capacity must be used to service a set of customers over a planning period of several days. Each customer specifies a service frequency, a set of allowable day-combinations and a quantity of product that the customer must receive every time he is visited. For example, a customer may require to be visited twice during a 5-day period imposing that these visits take place on Monday-Thursday or Monday-Friday or Tuesday-Friday. The problem consists in simultaneously assigning a day- combination to each customer and in designing the vehicle routes for each day so that each customer is visited the required number of times, the number of routes on each day does not exceed the number of vehicles available, and the total cost of the routes over the period is minimized. We also consider a tactical variant of this problem, called Tactical Planning Vehicle Routing Problem, where customers require to be visited on a specific day of the period but a penalty cost, called service cost, can be paid to postpone the visit to a later day than that required. At our knowledge all the algorithms proposed in the literature for the PVRP are heuristics. In this thesis we present for the first time an exact algorithm for the PVRP that is based on different relaxations of a set partitioning-like formulation. The effectiveness of the proposed algorithm is tested on a set of instances from the literature and on a new set of instances. Finally, the PDPTW is to service a set of transportation requests using a fleet of identical vehicles of limited capacity located at a central depot. Each request specifies a pickup location and a delivery location and requires that a given quantity of load is transported from the pickup location to the delivery location. Moreover, each location can be visited only within an associated time window. Each vehicle can perform at most one route and the problem is to satisfy all the requests using the available vehicles so that each request is serviced by a single vehicle, the load on each vehicle does not exceed the capacity, and all locations are visited according to their time window. We formulate the PDPTW as a set partitioning-like problem with additional cuts and we propose an exact algorithm based on different relaxations of the mathematical formulation and a branch-and-cut-and-price algorithm. The new algorithm is tested on two classes of problems from the literature and compared with a recent branch-and-cut-and-price algorithm from the literature.
Resumo:
Combinatorial Optimization is a branch of optimization that deals with the problems where the set of feasible solutions is discrete. Routing problem is a well studied branch of Combinatorial Optimization that concerns the process of deciding the best way of visiting the nodes (customers) in a network. Routing problems appear in many real world applications including: Transportation, Telephone or Electronic data Networks. During the years, many solution procedures have been introduced for the solution of different Routing problems. Some of them are based on exact approaches to solve the problems to optimality and some others are based on heuristic or metaheuristic search to find optimal or near optimal solutions. There is also a less studied method, which combines both heuristic and exact approaches to face different problems including those in the Combinatorial Optimization area. The aim of this dissertation is to develop some solution procedures based on the combination of heuristic and Integer Linear Programming (ILP) techniques for some important problems in Routing Optimization. In this approach, given an initial feasible solution to be possibly improved, the method follows a destruct-and-repair paradigm, where the given solution is randomly destroyed (i.e., customers are removed in a random way) and repaired by solving an ILP model, in an attempt to find a new improved solution.
Resumo:
This work presents hybrid Constraint Programming (CP) and metaheuristic methods for the solution of Large Scale Optimization Problems; it aims at integrating concepts and mechanisms from the metaheuristic methods to a CP-based tree search environment in order to exploit the advantages of both approaches. The modeling and solution of large scale combinatorial optimization problem is a topic which has arisen the interest of many researcherers in the Operations Research field; combinatorial optimization problems are widely spread in everyday life and the need of solving difficult problems is more and more urgent. Metaheuristic techniques have been developed in the last decades to effectively handle the approximate solution of combinatorial optimization problems; we will examine metaheuristics in detail, focusing on the common aspects of different techniques. Each metaheuristic approach possesses its own peculiarities in designing and guiding the solution process; our work aims at recognizing components which can be extracted from metaheuristic methods and re-used in different contexts. In particular we focus on the possibility of porting metaheuristic elements to constraint programming based environments, as constraint programming is able to deal with feasibility issues of optimization problems in a very effective manner. Moreover, CP offers a general paradigm which allows to easily model any type of problem and solve it with a problem-independent framework, differently from local search and metaheuristic methods which are highly problem specific. In this work we describe the implementation of the Local Branching framework, originally developed for Mixed Integer Programming, in a CP-based environment. Constraint programming specific features are used to ease the search process, still mantaining an absolute generality of the approach. We also propose a search strategy called Sliced Neighborhood Search, SNS, that iteratively explores slices of large neighborhoods of an incumbent solution by performing CP-based tree search and encloses concepts from metaheuristic techniques. SNS can be used as a stand alone search strategy, but it can alternatively be embedded in existing strategies as intensification and diversification mechanism. In particular we show its integration within the CP-based local branching. We provide an extensive experimental evaluation of the proposed approaches on instances of the Asymmetric Traveling Salesman Problem and of the Asymmetric Traveling Salesman Problem with Time Windows. The proposed approaches achieve good results on practical size problem, thus demonstrating the benefit of integrating metaheuristic concepts in CP-based frameworks.
Resumo:
We deal with five problems arising in the field of logistics: the Asymmetric TSP (ATSP), the TSP with Time Windows (TSPTW), the VRP with Time Windows (VRPTW), the Multi-Trip VRP (MTVRP), and the Two-Echelon Capacitated VRP (2E-CVRP). The ATSP requires finding a lest-cost Hamiltonian tour in a digraph. We survey models and classical relaxations, and describe the most effective exact algorithms from the literature. A survey and analysis of the polynomial formulations is provided. The considered algorithms and formulations are experimentally compared on benchmark instances. The TSPTW requires finding, in a weighted digraph, a least-cost Hamiltonian tour visiting each vertex within a given time window. We propose a new exact method, based on new tour relaxations and dynamic programming. Computational results on benchmark instances show that the proposed algorithm outperforms the state-of-the-art exact methods. In the VRPTW, a fleet of identical capacitated vehicles located at a depot must be optimally routed to supply customers with known demands and time window constraints. Different column generation bounding procedures and an exact algorithm are developed. The new exact method closed four of the five open Solomon instances. The MTVRP is the problem of optimally routing capacitated vehicles located at a depot to supply customers without exceeding maximum driving time constraints. Two set-partitioning-like formulations of the problem are introduced. Lower bounds are derived and embedded into an exact solution method, that can solve benchmark instances with up to 120 customers. The 2E-CVRP requires designing the optimal routing plan to deliver goods from a depot to customers by using intermediate depots. The objective is to minimize the sum of routing and handling costs. A new mathematical formulation is introduced. Valid lower bounds and an exact method are derived. Computational results on benchmark instances show that the new exact algorithm outperforms the state-of-the-art exact methods.
Resumo:
The Capacitated Location-Routing Problem (CLRP) is a NP-hard problem since it generalizes two well known NP-hard problems: the Capacitated Facility Location Problem (CFLP) and the Capacitated Vehicle Routing Problem (CVRP). The Multi-Depot Vehicle Routing Problem (MDVRP) is known to be a NP-hard since it is a generalization of the well known Vehicle Routing Problem (VRP), arising with one depot. This thesis addresses heuristics algorithms based on the well-know granular search idea introduced by Toth and Vigo (2003) to solve the CLRP and the MDVRP. Extensive computational experiments on benchmark instances for both problems have been performed to determine the effectiveness of the proposed algorithms. This work is organized as follows: Chapter 1 describes a detailed overview and a methodological review of the literature for the the Capacitated Location-Routing Problem (CLRP) and the Multi-Depot Vehicle Routing Problem (MDVRP). Chapter 2 describes a two-phase hybrid heuristic algorithm to solve the CLRP. Chapter 3 shows a computational comparison of heuristic algorithms for the CLRP. Chapter 4 presents a hybrid granular tabu search approach for solving the MDVRP.
Resumo:
Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.