21 resultados para Communication and language problems
em AMS Tesi di Dottorato - Alm@DL - Universit
Resumo:
Recent progress in microelectronic and wireless communications have enabled the development of low cost, low power, multifunctional sensors, which has allowed the birth of new type of networks named wireless sensor networks (WSNs). The main features of such networks are: the nodes can be positioned randomly over a given field with a high density; each node operates both like sensor (for collection of environmental data) as well as transceiver (for transmission of information to the data retrieval); the nodes have limited energy resources. The use of wireless communications and the small size of nodes, make this type of networks suitable for a large number of applications. For example, sensor nodes can be used to monitor a high risk region, as near a volcano; in a hospital they could be used to monitor physical conditions of patients. For each of these possible application scenarios, it is necessary to guarantee a trade-off between energy consumptions and communication reliability. The thesis investigates the use of WSNs in two possible scenarios and for each of them suggests a solution that permits to solve relating problems considering the trade-off introduced. The first scenario considers a network with a high number of nodes deployed in a given geographical area without detailed planning that have to transmit data toward a coordinator node, named sink, that we assume to be located onboard an unmanned aerial vehicle (UAV). This is a practical example of reachback communication, characterized by the high density of nodes that have to transmit data reliably and efficiently towards a far receiver. It is considered that each node transmits a common shared message directly to the receiver onboard the UAV whenever it receives a broadcast message (triggered for example by the vehicle). We assume that the communication channels between the local nodes and the receiver are subject to fading and noise. The receiver onboard the UAV must be able to fuse the weak and noisy signals in a coherent way to receive the data reliably. It is proposed a cooperative diversity concept as an effective solution to the reachback problem. In particular, it is considered a spread spectrum (SS) transmission scheme in conjunction with a fusion center that can exploit cooperative diversity, without requiring stringent synchronization between nodes. The idea consists of simultaneous transmission of the common message among the nodes and a Rake reception at the fusion center. The proposed solution is mainly motivated by two goals: the necessity to have simple nodes (to this aim we move the computational complexity to the receiver onboard the UAV), and the importance to guarantee high levels of energy efficiency of the network, thus increasing the network lifetime. The proposed scheme is analyzed in order to better understand the effectiveness of the approach presented. The performance metrics considered are both the theoretical limit on the maximum amount of data that can be collected by the receiver, as well as the error probability with a given modulation scheme. Since we deal with a WSN, both of these performance are evaluated taking into consideration the energy efficiency of the network. The second scenario considers the use of a chain network for the detection of fires by using nodes that have a double function of sensors and routers. The first one is relative to the monitoring of a temperature parameter that allows to take a local binary decision of target (fire) absent/present. The second one considers that each node receives a decision made by the previous node of the chain, compares this with that deriving by the observation of the phenomenon, and transmits the final result to the next node. The chain ends at the sink node that transmits the received decision to the user. In this network the goals are to limit throughput in each sensor-to-sensor link and minimize probability of error at the last stage of the chain. This is a typical scenario of distributed detection. To obtain good performance it is necessary to define some fusion rules for each node to summarize local observations and decisions of the previous nodes, to get a final decision that it is transmitted to the next node. WSNs have been studied also under a practical point of view, describing both the main characteristics of IEEE802:15:4 standard and two commercial WSN platforms. By using a commercial WSN platform it is realized an agricultural application that has been tested in a six months on-field experimentation.
Resumo:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.
Resumo:
In this thesis we study three combinatorial optimization problems belonging to the classes of Network Design and Vehicle Routing problems that are strongly linked in the context of the design and management of transportation networks: the Non-Bifurcated Capacitated Network Design Problem (NBP), the Period Vehicle Routing Problem (PVRP) and the Pickup and Delivery Problem with Time Windows (PDPTW). These problems are NP-hard and contain as special cases some well known difficult problems such as the Traveling Salesman Problem and the Steiner Tree Problem. Moreover, they model the core structure of many practical problems arising in logistics and telecommunications. The NBP is the problem of designing the optimum network to satisfy a given set of traffic demands. Given a set of nodes, a set of potential links and a set of point-to-point demands called commodities, the objective is to select the links to install and dimension their capacities so that all the demands can be routed between their respective endpoints, and the sum of link fixed costs and commodity routing costs is minimized. The problem is called non- bifurcated because the solution network must allow each demand to follow a single path, i.e., the flow of each demand cannot be splitted. Although this is the case in many real applications, the NBP has received significantly less attention in the literature than other capacitated network design problems that allow bifurcation. We describe an exact algorithm for the NBP that is based on solving by an integer programming solver a formulation of the problem strengthened by simple valid inequalities and four new heuristic algorithms. One of these heuristics is an adaptive memory metaheuristic, based on partial enumeration, that could be applied to a wider class of structured combinatorial optimization problems. In the PVRP a fleet of vehicles of identical capacity must be used to service a set of customers over a planning period of several days. Each customer specifies a service frequency, a set of allowable day-combinations and a quantity of product that the customer must receive every time he is visited. For example, a customer may require to be visited twice during a 5-day period imposing that these visits take place on Monday-Thursday or Monday-Friday or Tuesday-Friday. The problem consists in simultaneously assigning a day- combination to each customer and in designing the vehicle routes for each day so that each customer is visited the required number of times, the number of routes on each day does not exceed the number of vehicles available, and the total cost of the routes over the period is minimized. We also consider a tactical variant of this problem, called Tactical Planning Vehicle Routing Problem, where customers require to be visited on a specific day of the period but a penalty cost, called service cost, can be paid to postpone the visit to a later day than that required. At our knowledge all the algorithms proposed in the literature for the PVRP are heuristics. In this thesis we present for the first time an exact algorithm for the PVRP that is based on different relaxations of a set partitioning-like formulation. The effectiveness of the proposed algorithm is tested on a set of instances from the literature and on a new set of instances. Finally, the PDPTW is to service a set of transportation requests using a fleet of identical vehicles of limited capacity located at a central depot. Each request specifies a pickup location and a delivery location and requires that a given quantity of load is transported from the pickup location to the delivery location. Moreover, each location can be visited only within an associated time window. Each vehicle can perform at most one route and the problem is to satisfy all the requests using the available vehicles so that each request is serviced by a single vehicle, the load on each vehicle does not exceed the capacity, and all locations are visited according to their time window. We formulate the PDPTW as a set partitioning-like problem with additional cuts and we propose an exact algorithm based on different relaxations of the mathematical formulation and a branch-and-cut-and-price algorithm. The new algorithm is tested on two classes of problems from the literature and compared with a recent branch-and-cut-and-price algorithm from the literature.
Resumo:
Crew scheduling and crew rostering are similar and related problems which can be solved by similar procedures. So far, the existing solution methods usually create a model for each one of these problems (scheduling and rostering), and when they are solved together in some cases an interaction between models is considered in order to obtain a better solution. A single set covering model to solve simultaneously both problems is presented here, where the total quantity of drivers needed is directly considered and optimized. This integration allows to optimize all of the depots at the same time, while traditional approaches needed to work depot by depot, and also it allows to see and manage the relationship between scheduling and rostering, which was known in some degree but usually not easy to quantify as this model permits. Recent research in the area of crew scheduling and rostering has stated that one of the current challenges to be achieved is to determine a schedule where crew fatigue, which depends mainly on the quality of the rosters created, is reduced. In this approach rosters are constructed in such way that stable working hours are used in every week of work, and a change to a different shift is done only using free days in between to make easier the adaptation to the new working hours. Computational results for real-world-based instances are presented. Instances are geographically diverse to test the performance of the procedures and the model in different scenarios.
Resumo:
This work presents exact, hybrid algorithms for mixed resource Allocation and Scheduling problems; in general terms, those consist into assigning over time finite capacity resources to a set of precedence connected activities. The proposed methods have broad applicability, but are mainly motivated by applications in the field of Embedded System Design. In particular, high-performance embedded computing recently witnessed the shift from single CPU platforms with application-specific accelerators to programmable Multi Processor Systems-on-Chip (MPSoCs). Those allow higher flexibility, real time performance and low energy consumption, but the programmer must be able to effectively exploit the platform parallelism. This raises interest in the development of algorithmic techniques to be embedded in CAD tools; in particular, given a specific application and platform, the objective if to perform optimal allocation of hardware resources and to compute an execution schedule. On this regard, since embedded systems tend to run the same set of applications for their entire lifetime, off-line, exact optimization approaches are particularly appealing. Quite surprisingly, the use of exact algorithms has not been well investigated so far; this is in part motivated by the complexity of integrated allocation and scheduling, setting tough challenges for ``pure'' combinatorial methods. The use of hybrid CP/OR approaches presents the opportunity to exploit mutual advantages of different methods, while compensating for their weaknesses. In this work, we consider in first instance an Allocation and Scheduling problem over the Cell BE processor by Sony, IBM and Toshiba; we propose three different solution methods, leveraging decomposition, cut generation and heuristic guided search. Next, we face Allocation and Scheduling of so-called Conditional Task Graphs, explicitly accounting for branches with outcome not known at design time; we extend the CP scheduling framework to effectively deal with the introduced stochastic elements. Finally, we address Allocation and Scheduling with uncertain, bounded execution times, via conflict based tree search; we introduce a simple and flexible time model to take into account duration variability and provide an efficient conflict detection method. The proposed approaches achieve good results on practical size problem, thus demonstrating the use of exact approaches for system design is feasible. Furthermore, the developed techniques bring significant contributions to combinatorial optimization methods.
Resumo:
This thesis presents the outcomes of my Ph.D. course in telecommunications engineering. The focus of my research has been on Global Navigation Satellite Systems (GNSS) and in particular on the design of aiding schemes operating both at position and physical level and the evaluation of their feasibility and advantages. Assistance techniques at the position level are considered to enhance receiver availability in challenging scenarios where satellite visibility is limited. Novel positioning techniques relying on peer-to-peer interaction and exchange of information are thus introduced. More specifically two different techniques are proposed: the Pseudorange Sharing Algorithm (PSA), based on the exchange of GNSS data, that allows to obtain coarse positioning where the user has scarce satellite visibility, and the Hybrid approach, which also permits to improve the accuracy of the positioning solution. At the physical level, aiding schemes are investigated to improve the receiver’s ability to synchronize with satellite signals. An innovative code acquisition strategy for dual-band receivers, the Cross-Band Aiding (CBA) technique, is introduced to speed-up initial synchronization by exploiting the exchange of time references between the two bands. In addition vector configurations for code tracking are analyzed and their feedback generation process thoroughly investigated.
Resumo:
The work of the present thesis is focused on the implementation of microelectronic voltage sensing devices, with the purpose of transmitting and extracting analog information between devices of different nature at short distances or upon contact. Initally, chip-to-chip communication has been studied, and circuitry for 3D capacitive coupling has been implemented. Such circuits allow the communication between dies fabricated in different technologies. Due to their novelty, they are not standardized and currently not supported by standard CAD tools. In order to overcome such burden, a novel approach for the characterization of such communicating links has been proposed. This results in shorter design times and increased accuracy. Communication between an integrated circuit (IC) and a probe card has been extensively studied as well. Today wafer probing is a costly test procedure with many drawbacks, which could be overcome by a different communication approach such as capacitive coupling. For this reason wireless wafer probing has been investigated as an alternative approach to standard on-contact wafer probing. Interfaces between integrated circuits and biological systems have also been investigated. Active electrodes for simultaneous electroencephalography (EEG) and electrical impedance tomography (EIT) have been implemented for the first time in a 0.35 um process. Number of wires has been minimized by sharing the analog outputs and supply on a single wire, thus implementing electrodes that require only 4 wires for their operation. Minimization of wires reduces the cable weight and thus limits the patient's discomfort. The physical channel for communication between an IC and a biological medium is represented by the electrode itself. As this is a very crucial point for biopotential acquisitions, large efforts have been carried in order to investigate the different electrode technologies and geometries and an electromagnetic model is presented in order to characterize the properties of the electrode to skin interface.
Resumo:
This thesis is a collection of essays related to the topic of innovation in the service sector. The choice of this structure is functional to the purpose of single out some of the relevant issues and try to tackle them, revising first the state of the literature and then proposing a way forward. Three relevant issues has been therefore selected: (i) the definition of innovation in the service sector and the connected question of measurement of innovation; (ii) the issue of productivity in services; (iii) the classification of innovative firms in the service sector. Facing the first issue, chapter II shows how the initial width of the original Schumpeterian definition of innovation has been narrowed and then passed to the service sector form the manufacturing one in a reduce technological form. Chapter III tackle the issue of productivity in services, discussing the difficulties for measuring productivity in a context where the output is often immaterial. We reconstruct the dispute on the Baumol’s cost disease argument and propose two different ways to go forward in the research on productivity in services: redefining the output along the line of a characteristic approach; and redefining the inputs, particularly analysing which kind of input it’s worth saving. Chapter IV derives an integrated taxonomy of innovative service and manufacturing firms, using data coming from the 2008 CIS survey for Italy. This taxonomy is based on the enlarged definition of “innovative firm” deriving from the Schumpeterian definition of innovation and classify firms using a cluster analysis techniques. The result is the emergence of a four cluster solution, where firms are differentiated by the breadth of the innovation activities in which they are involved. Chapter 5 reports some of the main conclusions of each singular previous chapter and the points worth of further research in the future.
Resumo:
This thesis focuses on the energy efficiency in wireless networks under the transmission and information diffusion points of view. In particular, on one hand, the communication efficiency is investigated, attempting to reduce the consumption during transmissions, while on the other hand the energy efficiency of the procedures required to distribute the information among wireless nodes in complex networks is taken into account. For what concerns energy efficient communications, an innovative transmission scheme reusing source of opportunity signals is introduced. This kind of signals has never been previously studied in literature for communication purposes. The scope is to provide a way for transmitting information with energy consumption close to zero. On the theoretical side, starting from a general communication channel model subject to a limited input amplitude, the theme of low power transmission signals is tackled under the perspective of stating sufficient conditions for the capacity achieving input distribution to be discrete. Finally, the focus is shifted towards the design of energy efficient algorithms for the diffusion of information. In particular, the endeavours are aimed at solving an estimation problem distributed over a wireless sensor network. The proposed solutions are deeply analyzed both to ensure their energy efficiency and to guarantee their robustness against losses during the diffusion of information (against information diffusion truncation more in general).
Resumo:
Logistics involves planning, managing, and organizing the flows of goods from the point of origin to the point of destination in order to meet some requirements. Logistics and transportation aspects are very important and represent a relevant costs for producing and shipping companies, but also for public administration and private citizens. The optimization of resources and the improvement in the organization of operations is crucial for all branches of logistics, from the operation management to the transportation. As we will have the chance to see in this work, optimization techniques, models, and algorithms represent important methods to solve the always new and more complex problems arising in different segments of logistics. Many operation management and transportation problems are related to the optimization class of problems called Vehicle Routing Problems (VRPs). In this work, we consider several real-world deterministic and stochastic problems that are included in the wide class of the VRPs, and we solve them by means of exact and heuristic methods. We treat three classes of real-world routing and logistics problems. We deal with one of the most important tactical problems that arises in the managing of the bike sharing systems, that is the Bike sharing Rebalancing Problem (BRP). We propose models and algorithms for real-world earthwork optimization problems. We describe the 3DP process and we highlight several optimization issues in 3DP. Among those, we define the problem related to the tool path definition in the 3DP process, the 3D Routing Problem (3DRP), which is a generalization of the arc routing problem. We present an ILP model and several heuristic algorithms to solve the 3DRP.
Resumo:
According to much evidence, observing objects activates two types of information: structural properties, i.e., the visual information about the structural features of objects, and function knowledge, i.e., the conceptual information about their skilful use. Many studies so far have focused on the role played by these two kinds of information during object recognition and on their neural underpinnings. However, to the best of our knowledge no study so far has focused on the different activation of this information (structural vs. function) during object manipulation and conceptualization, depending on the age of participants and on the level of object familiarity (familiar vs. non-familiar). Therefore, the main aim of this dissertation was to investigate how actions and concepts related to familiar and non-familiar objects may vary across development. To pursue this aim, four studies were carried out. A first study led to the creation of the Familiar and Non-Familiar Stimuli Database, a set of everyday objects classified by Italian pre-schoolers, schoolers, and adults, useful to verify how object knowledge is modulated by age and frequency of use. A parallel study demonstrated that factors such as sociocultural dynamics may affect the perception of objects. Specifically, data for familiarity, naming, function, using and frequency of use of the objects used to create the Familiar And Non-Familiar Stimuli Database were collected with Dutch and Croatian children and adults. The last two studies on object interaction and language provide further evidence in support of the literature on affordances and on the link between affordances and the cognitive process of language from a developmental point of view, supporting the perspective of a situated cognition and emphasizing the crucial role of human experience.
Resumo:
This thesis is a combination of research questions in development economics and economics of culture, with an emphasis on the role of ancestry, gender and language policies in shaping inequality of opportunities and socio-economic outcomes across different segments of a society. The first chapter shows both theoretically and empirically that heterogeneity in risk attitudes can be traced to the ethnic origins and ancestral way of living. In particular, I construct a measure of historical nomadism at the ethnicity level and link it to contemporary individual-level data on various proxies of risk attitudes. I exploit exogenous variation in biodiversity to build a novel instrument for nomadism: distance to domestication points. I find that descendants of ethnic groups that historically practiced nomadism (i) are more willing to take risks, (ii) value security less, and (iii) have riskier health behavior. The second chapter evaluates the nature of a trade-off between the advantages of female labor participation and the positive effects of female education. This work exploits a triple difference identification strategy relying on exogenous spike in cotton price and spatial variation in suitability for cotton, and split sample analyses based on the exogenous allocation of land contracts. Results show that gender differences in parental investments in patriarchal societies can be reinforced by the type of agricultural activity, while positive economic shocks may further exacerbate this bias, additionally crowding out higher possibilities to invest in female education. The third chapter brings novel evidence of the role of the language policy in building national sentiments, affecting educational and occupational choices. Here I focus on the case of Uzbekistan and estimate the effects of exposure to the Latin alphabet on informational literacy, education and career choices. I show that alphabet change affects people's informational literacy and the formation of certain educational and labour market trends.
Resumo:
The continuous and swift progression of both wireless and wired communication technologies in today's world owes its success to the foundational systems established earlier. These systems serve as the building blocks that enable the enhancement of services to cater to evolving requirements. Studying the vulnerabilities of previously designed systems and their current usage leads to the development of new communication technologies replacing the old ones such as GSM-R in the railway field. The current industrial research has a specific focus on finding an appropriate telecommunication solution for railway communications that will replace the GSM-R standard which will be switched off in the next years. Various standardization organizations are currently exploring and designing a radiofrequency technology based standard solution to serve railway communications in the form of FRMCS (Future Railway Mobile Communication System) to substitute the current GSM-R. Bearing on this topic, the primary strategic objective of the research is to assess the feasibility to leverage on the current public network technologies such as LTE to cater to mission and safety critical communication for low density lines. The research aims to identify the constraints, define a service level agreement with telecom operators, and establish the necessary implementations to make the system as reliable as possible over an open and public network, while considering safety and cybersecurity aspects. The LTE infrastructure would be utilized to transmit the vital data for the communication of a railway system and to gather and transmit all the field measurements to the control room for maintenance purposes. Given the significance of maintenance activities in the railway sector, the ongoing research includes the implementation of a machine learning algorithm to detect railway equipment faults, reducing time and human analysis errors due to the large volume of measurements from the field.
Resumo:
We study automorphisms and the mapping class group of irreducible holomorphic symplectic (IHS) manifolds. We produce two examples of manifolds of K3[2] type with a symplectic action of the alternating group A7. Our examples are realized as double EPW-sextics, the large cardinality of the group allows us to prove the irrationality of the associated families of Gushel-Mukai threefolds. We describe the group of automorphisms of double EPW-cubes. We give an answer to the Nielsen realization problem for IHS manifolds in analogy to the case of K3 surfaces, determining when a finite group of mapping classes fixes an Einstein (or Kähler-Einstein) metric. We describe, for some deformation classes, the mapping class group and its representation in second cohomology. We classify non-symplectic involutions of manifolds of OG10 type determining the possible invariant and coinvariant lattices. We study non-symplectic involutions on LSV manifolds that are geometrically induced from non-symplectic involutions on cubic fourfolds.