5 resultados para Coastal Monitoring. Geodesy. DEM. LiDAR

em AMS Tesi di Dottorato - Alm@DL - Universit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new Coastal Rapid Environmental Assessment (CREA) strategy has been developed and successfully applied to the Northern Adriatic Sea. CREA strategy exploits the recent advent of operational oceanography to establish a CREA system based on an operational regional forecasting system and coastal monitoring networks of opportunity. The methodology wishes to initialize a coastal high resolution model, nested within the regional forecasting system, blending the large scale parent model fields with the available coastal observations to generate the requisite field estimates. CREA modeling system consists of a high resolution, O(800m), Adriatic SHELF model (ASHELF) implemented into the Northern Adriatic basin and nested within the Adriatic Forecasting System (AFS) (Oddo et al. 2006). The observational system is composed by the coastal networks established in the framework of ADRICOSM (ADRiatic sea integrated COastal areaS and river basin Managment system) Pilot Project. An assimilation technique exerts a correction of the initial field provided by AFS on the basis of the available observations. The blending of the two data sets has been carried out through a multi-scale optimal interpolation technique developed by Mariano and Brown (1992). Two CREA weekly exercises have been conducted: the first, at the beginning of May (spring experiment); the second in middle August (summer experiment). The weeks have been chosen looking at the availability of all coastal observations in the initialization day and one week later to validate model results, verifying our predictive skills. ASHELF spin up time has been investigated too, through a dedicated experiment, in order to obtain the maximum forecast accuracy within a minimum time. Energetic evaluations show that for the Northern Adriatic Sea and for the forcing applied, a spin-up period of one week allows ASHELF to generate new circulation features enabled by the increased resolution and its total kinetic energy to establish a new dynamical balance. CREA results, evaluated by mean of standard statistics between ASHELF and coastal CTDs, show improvement deriving from the initialization technique and a good model performance in the coastal areas of the Northern Adriatic basin, characterized by a shallow and wide continental shelf subject to substantial freshwater influence from rivers. Results demonstrate the feasibility of our CREA strategy to support coastal zone management and wish an additional establishment of operational coastal monitoring activities to advance it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sandy coasts represent vital areas whose preservation and maintenance also involve economic and tourist interests. Besides, these dynamic environments undergo the erosion process at different levels depending on their specific characteristics. For this reason, defence interventions are commonly realized by combining engineering solutions and management policies to evaluate their effects over time. Monitoring activities represent the fundamental instrument to obtain a deep knowledge of the investigated phenomenon. Thanks to technological development, several possibilities both in terms of geomatic surveying techniques and processing tools are available, allowing to reach high performances and accuracy. Nevertheless, when the littoral definition includes both emerged and submerged beaches, several issues have to be considered. Therefore, the geomatic surveys and all the following steps need to be calibrated according to the individual application, with the reference system, accuracy and spatial resolution as primary aspects. This study provides the evaluation of the available geomatic techniques, processing approaches, and derived products, aiming at optimising the entire workflow of coastal monitoring by adopting an accuracy-efficiency trade-off. The presented analyses highlight the balance point when the increase in performance becomes an additional value for the obtained products ensuring proper data management. This perspective can represent a helpful instrument to properly plan the monitoring activities according to the specific purposes of the analysis. Finally, the primary uses of the acquired and processed data in monitoring contexts are presented, also considering possible applications for numerical modelling as supporting tools. Moreover, the theme of coastal monitoring has been addressed throughout this thesis by considering a practical point of view, linking to the activities performed by Arpae (Regional agency for prevention, environment and energy of Emilia-Romagna). Indeed, the Adriatic coast of Emilia-Romagna, where sandy beaches particularly exposed to erosion are present, has been chosen as a case study for all the analyses and considerations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents SEELF (Sustainable EEL fishery) Index, a methodology for evaluation of European eel (Anguilla anguilla) for the implementation of an effective Eel Management Plan, as defined by EU Regulation No.1100/2007. SEELF uses internal and external indices, age and blood parameters, and selects suitable specimen for restocking; it is also a reliable tool for eel stock management. In fact, SEELF Index, was developed in two versions: SEELF A, to be used in field operations (catch&release, eel status monitoring) and SEELF B to be used for quality control (food production) and research (eel status monitoring). Health status was evaluated also by biomarker analysis (ChE), and data were compared with age of eel. Age determination was performed with otolith reading and fish scale reading and a calibration between the two methods was possible. The study area was the Comacchio lagoon, a brackish coastal lagoon in Italy, well known as an example of suitable environment for eel fishery, where the capability to use the local natural resources has long been a key factor for a successful fishery management. Comacchio lagoon is proposed as an area where an effective EMP can be performed, in agreement with the main features (management of basins, reduction of mortality due to predators,etc.) highlighted for designation of European Restocking Area (ERA). The ERA is a new concept, proposed as a pillar of a new strategy on eel management and conservation. Furthermore, the features of ERAs can be useful in the framework of European Scale Eel Management Plan (ESEMP), proposed as a European scale implementation of EMP, providing a more effectiveness of conservation measures for eel management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the potentially irreversible impact of groundwater quality deterioration in the Ferrara coastal aquifer, answers concerning the assessment of the extent of the salinization problem, the understanding of the mechanisms governing salinization processes, and the sustainability of the current water resources management are urgent. In this light, the present thesis aims to achieve the following objectives: Characterization of the lowland coastal aquifer of Ferrara: hydrology, hydrochemistry and evolution of the system The importance of data acquisition techniques in saltwater intrusion monitoring Predicting salinization trends in the lowland coastal aquifer Ammonium occurrence in a salinized lowland coastal aquifer Trace elements mobility in a saline coastal aquifer

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Snow plays a crucial role in the Earth's hydrological cycle and energy budget, making its monitoring necessary. In this context, ground-based radars and in situ instruments are essential thanks to their spatial coverage, resolution, and temporal sampling. Deep understanding and reliable measurements of snow properties are crucial over Antarctica to assess potential future changes of the surface mass balance (SMB) and define the contribution of the Antarctic ice sheet on sea-level rise. However, despite its key role, Antarctic precipitation is poorly investigated due to the continent's inaccessibility and extreme environment. In this framework, this Thesis aims to contribute to filling this gap by in-depth characterization of Antarctic precipitation at the Mario Zucchelli station from different points of view: microphysical features, quantitative precipitation estimation (QPE), vertical structure of precipitation, and scavenging properties. For this purpose, a K-band vertically pointing radar collocated with a laser disdrometer and an optical particle counter (OPC) were used. The radar probed the lowest atmospheric layers with high vertical resolution, allowing the first trusted measurement at only 105 m height. Disdrometer and OPC provided information on the particle size distribution and aerosol concentrations. An innovative snow classification methodology was designed by comparing the radar reflectivity (Ze) and disdrometer-derived reflectivity by means of DDA simulations. Results of classification were exploited in QPE through appropriate Ze-snow rate relationships. The accuracy of the resulting QPE was benchmarked against a collocated weighing gauge. Vertical radar profiles were also investigated to highlight hydrometeors' sublimation and growth processes. Finally, OPC and disdrometer data allowed providing the first-ever estimates of scavenging properties of Antarctic snowfall. Results presented in this Thesis give rise to advances in knowledge of the characteristics of snowfall in Antarctica, contributing to a better assessment of the SMB of the Antarctic ice sheet, the major player in the global sea-level rise.