7 resultados para Analytic number theory
em AMS Tesi di Dottorato - Alm@DL - Universit
Resumo:
The aim of this work is to put forward a statistical mechanics theory of social interaction, generalizing econometric discrete choice models. After showing the formal equivalence linking econometric multinomial logit models to equilibrium statical mechanics, a multi- population generalization of the Curie-Weiss model for ferromagnets is considered as a starting point in developing a model capable of describing sudden shifts in aggregate human behaviour. Existence of the thermodynamic limit for the model is shown by an asymptotic sub-additivity method and factorization of correlation functions is proved almost everywhere. The exact solution for the model is provided in the thermodynamical limit by nding converging upper and lower bounds for the system's pressure, and the solution is used to prove an analytic result regarding the number of possible equilibrium states of a two-population system. The work stresses the importance of linking regimes predicted by the model to real phenomena, and to this end it proposes two possible procedures to estimate the model's parameters starting from micro-level data. These are applied to three case studies based on census type data: though these studies are found to be ultimately inconclusive on an empirical level, considerations are drawn that encourage further refinements of the chosen modelling approach, to be considered in future work.
Resumo:
Piezoelectrics present an interactive electromechanical behaviour that, especially in recent years, has generated much interest since it renders these materials adapt for use in a variety of electronic and industrial applications like sensors, actuators, transducers, smart structures. Both mechanical and electric loads are generally applied on these devices and can cause high concentrations of stress, particularly in proximity of defects or inhomogeneities, such as flaws, cavities or included particles. A thorough understanding of their fracture behaviour is crucial in order to improve their performances and avoid unexpected failures. Therefore, a considerable number of research works have addressed this topic in the last decades. Most of the theoretical studies on this subject find their analytical background in the complex variable formulation of plane anisotropic elasticity. This theoretical approach bases its main origins in the pioneering works of Muskelishvili and Lekhnitskii who obtained the solution of the elastic problem in terms of independent analytic functions of complex variables. In the present work, the expressions of stresses and elastic and electric displacements are obtained as functions of complex potentials through an analytical formulation which is the application to the piezoelectric static case of an approach introduced for orthotropic materials to solve elastodynamics problems. This method can be considered an alternative to other formalisms currently used, like the Stroh’s formalism. The equilibrium equations are reduced to a first order system involving a six-dimensional vector field. After that, a similarity transformation is induced to reach three independent Cauchy-Riemann systems, so justifying the introduction of the complex variable notation. Closed form expressions of near tip stress and displacement fields are therefore obtained. In the theoretical study of cracked piezoelectric bodies, the issue of assigning consistent electric boundary conditions on the crack faces is of central importance and has been addressed by many researchers. Three different boundary conditions are commonly accepted in literature: the permeable, the impermeable and the semipermeable (“exact”) crack model. This thesis takes into considerations all the three models, comparing the results obtained and analysing the effects of the boundary condition choice on the solution. The influence of load biaxiality and of the application of a remote electric field has been studied, pointing out that both can affect to a various extent the stress fields and the angle of initial crack extension, especially when non-singular terms are retained in the expressions of the electro-elastic solution. Furthermore, two different fracture criteria are applied to the piezoelectric case, and their outcomes are compared and discussed. The work is organized as follows: Chapter 1 briefly introduces the fundamental concepts of Fracture Mechanics. Chapter 2 describes plane elasticity formalisms for an anisotropic continuum (Eshelby-Read-Shockley and Stroh) and introduces for the simplified orthotropic case the alternative formalism we want to propose. Chapter 3 outlines the Linear Theory of Piezoelectricity, its basic relations and electro-elastic equations. Chapter 4 introduces the proposed method for obtaining the expressions of stresses and elastic and electric displacements, given as functions of complex potentials. The solution is obtained in close form and non-singular terms are retained as well. Chapter 5 presents several numerical applications aimed at estimating the effect of load biaxiality, electric field, considered permittivity of the crack. Through the application of fracture criteria the influence of the above listed conditions on the response of the system and in particular on the direction of crack branching is thoroughly discussed.
Resumo:
The aim of the thesis is to propose a Bayesian estimation through Markov chain Monte Carlo of multidimensional item response theory models for graded responses with complex structures and correlated traits. In particular, this work focuses on the multiunidimensional and the additive underlying latent structures, considering that the first one is widely used and represents a classical approach in multidimensional item response analysis, while the second one is able to reflect the complexity of real interactions between items and respondents. A simulation study is conducted to evaluate the parameter recovery for the proposed models under different conditions (sample size, test and subtest length, number of response categories, and correlation structure). The results show that the parameter recovery is particularly sensitive to the sample size, due to the model complexity and the high number of parameters to be estimated. For a sufficiently large sample size the parameters of the multiunidimensional and additive graded response models are well reproduced. The results are also affected by the trade-off between the number of items constituting the test and the number of item categories. An application of the proposed models on response data collected to investigate Romagna and San Marino residents' perceptions and attitudes towards the tourism industry is also presented.
Resumo:
This thesis aims at investigating a new approach to document analysis based on the idea of structural patterns in XML vocabularies. My work is founded on the belief that authors do naturally converge to a reasonable use of markup languages and that extreme, yet valid instances are rare and limited. Actual documents, therefore, may be used to derive classes of elements (patterns) persisting across documents and distilling the conceptualization of the documents and their components, and may give ground for automatic tools and services that rely on no background information (such as schemas) at all. The central part of my work consists in introducing from the ground up a formal theory of eight structural patterns (with three sub-patterns) that are able to express the logical organization of any XML document, and verifying their identifiability in a number of different vocabularies. This model is characterized by and validated against three main dimensions: terseness (i.e. the ability to represent the structure of a document with a small number of objects and composition rules), coverage (i.e. the ability to capture any possible situation in any document) and expressiveness (i.e. the ability to make explicit the semantics of structures, relations and dependencies). An algorithm for the automatic recognition of structural patterns is then presented, together with an evaluation of the results of a test performed on a set of more than 1100 documents from eight very different vocabularies. This language-independent analysis confirms the ability of patterns to capture and summarize the guidelines used by the authors in their everyday practice. Finally, I present some systems that work directly on the pattern-based representation of documents. The ability of these tools to cover very different situations and contexts confirms the effectiveness of the model.
Resumo:
The present Thesis reports on the various research projects to which I have contributed during my PhD period, working with several research groups, and whose results have been communicated in a number of scientific publications. The main focus of my research activity was to learn, test, exploit and extend the recently developed vdW-DFT (van der Waals corrected Density Functional Theory) methods for computing the structural, vibrational and electronic properties of ordered molecular crystals from first principles. A secondary, and more recent, research activity has been the analysis with microelectrostatic methods of Molecular Dynamics (MD) simulations of disordered molecular systems. While only very unreliable methods based on empirical models were practically usable until a few years ago, accurate calculations of the crystal energy are now possible, thanks to very fast modern computers and to the excellent performance of the best vdW-DFT methods. Accurate energies are particularly important for describing organic molecular solids, since they often exhibit several alternative crystal structures (polymorphs), with very different packing arrangements but very small energy differences. Standard DFT methods do not describe the long-range electron correlations which give rise to the vdW interactions. Although weak, these interactions are extremely sensitive to the packing arrangement, and neglecting them used to be a problem. The calculations of reliable crystal structures and vibrational frequencies has been made possible only recently, thanks to development of some good representations of the vdW contribution to the energy (known as “vdW corrections”).
Excitonic properties of transition metal oxide perovskites and workflow automatization of GW schemes
Resumo:
The Many-Body-Perturbation Theory approach is among the most successful theoretical frameworks for the study of excited state properties. It allows to describe the excitonic interactions, which play a fundamental role in the optical response of insulators and semiconductors. The first part of the thesis focuses on the study of the quasiparticle, optical and excitonic properties of \textit{bulk} Transition Metal Oxide (TMO) perovskites using a G$_0$W$_0$+Bethe Salpeter Equation (BSE) approach. A representative set of 14 compounds has been selected, including 3d, 4d and 5d perovskites. An approximation of the BSE scheme, based on an analytic diagonal expression for the inverse dielectric function, is used to compute the exciton binding energies and is carefully bench-marked against the standard BSE results. In 2019 an important breakthrough has been achieved with the synthesis of ultrathin SrTiO3 films down to the monolayer limit. This allows us to explore how the quasiparticle and optical properties of SrTiO3 evolve from the bulk to the two-dimensional limit. The electronic structure is computed with G0W0 approach: we prove that the inclusion of the off-diagonal self-energy terms is required to avoid non-physical band dispersions. The excitonic properties are investigated beyond the optical limit at finite momenta. Lastly a study of the under pressure optical response of the topological nodal line semimetal ZrSiS is presented, in conjunction with the experimental results from the group of Prof. Dr. Kuntscher of the Augsburg University. The second part of the thesis discusses the implementation of a workflow to automate G$_0$W$_0$ and BSE calculations with the VASP software. The workflow adopts a convergence scheme based on an explicit basis-extrapolation approach [J. Klimeš \textit{et al.}, Phys. Rev.B 90, 075125 (2014)] which allows to reduce the number of intermediate calculations required to reach convergence and to explicit estimate the error associated to the basis-set truncation.
Resumo:
The main topic of this thesis is confounding in linear regression models. It arises when a relationship between an observed process, the covariate, and an outcome process, the response, is influenced by an unmeasured process, the confounder, associated with both. Consequently, the estimators for the regression coefficients of the measured covariates might be severely biased, less efficient and characterized by misleading interpretations. Confounding is an issue when the primary target of the work is the estimation of the regression parameters. The central point of the dissertation is the evaluation of the sampling properties of parameter estimators. This work aims to extend the spatial confounding framework to general structured settings and to understand the behaviour of confounding as a function of the data generating process structure parameters in several scenarios focusing on the joint covariate-confounder structure. In line with the spatial statistics literature, our purpose is to quantify the sampling properties of the regression coefficient estimators and, in turn, to identify the most prominent quantities depending on the generative mechanism impacting confounding. Once the sampling properties of the estimator conditionally on the covariate process are derived as ratios of dependent quadratic forms in Gaussian random variables, we provide an analytic expression of the marginal sampling properties of the estimator using Carlson’s R function. Additionally, we propose a representative quantity for the magnitude of confounding as a proxy of the bias, its first-order Laplace approximation. To conclude, we work under several frameworks considering spatial and temporal data with specific assumptions regarding the covariance and cross-covariance functions used to generate the processes involved. This study allows us to claim that the variability of the confounder-covariate interaction and of the covariate plays the most relevant role in determining the principal marker of the magnitude of confounding.