2 resultados para yield components

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiparental cross designs for mapping quantitative trait loci (QTL) in crops are efficient alternatives to conventional biparental experimental populations because they exploit a broader genetic basis and higher mapping resolution. We describe the development and deployment of a multiparental recombinant inbred line (RIL) population in durum wheat (Triticum durum Desf.) obtained by crossing four elite cultivars characterized by different traits of agronomic value. A linkage map spanning 2,663 cM and including 7,594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs with a wheat-dedicated 90k SNP chip. A cluster file was developed for correct allele calling in the framework of the tetraploid durum wheat genome. Based on phenotypic data collected over four field experiments, a multi-trait quantitative trait loci (QTL) analysis was carried out for 18 traits of agronomic relevance (including yield, yield-components, morpho-physiological and seed quality traits). Across environments, a total of 63 QTL were identified and characterized in terms of the four founder haplotypes. We mapped two QTL for grain yield across environments and 23 QTL for grain yield components. A novel major QTL for number of grain per spikelet/ear was mapped on chr 2A and shown to control up to 39% of phenotypic variance in this cross. Functionally different QTL alleles, in terms of direction and size of genetic effect, were distributed among the four parents. Based on the occurrence of QTL-clusters, we characterized the breeding values (in terms of effects on yield) of most of QTL for heading and maturity as well as yield component and quality QTL. This multiparental RIL population provides the wheat community with a highly informative QTL mapping resource enabling the dissection of the genetic architecture of multiple agronomic relevant traits in durum wheat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maize ear fasciation originates from excessive or abnormal proliferation of the ear meristem and usually manifests as multiple-tipped ear, ear flatness and/or disordered kernel arrangement. Ear prolificacy expresses as multiple ears per node. Both traits can affect grain yield. In this study, the genetic control of the two traits was analyzed using two recombinant inbred lines (RIL) populations (B73 × Lo1016 and Lo964 × Lo1016) with Lo1016 and Lo964 as donors of ear fasciation and prolificacy, respectively. Four ear fasciation-related traits (ear fasciation, kernel distribution and ear ovality indexes and ratio of ear diameters), number of kernel rows, ear prolificacy and number of tillers were phenotyped in multi-year field experiments. Ear fasciation traits and number of kernel rows showed relatively high heritability (h2 > 0.5) except ratio of ear diameters, and showed correlation. Prolificacy and tillering h2 ranged 0.41 - 0.78 and did not correlate. QTL mapping identified four QTL for ear fasciation, on chr. 1 (two QTLs), 5 and 7, the latter two overlapping with QTLs for number of kernel rows. However, the strongest effect QTL for number of kernel rows mapped on chr. 2 independently from ear fasciation. Four and five non-overlapping QTLs were mapped for ear prolificacy and tillering, respectively. Two ear fasciation QTLs from this study, qFas1.2 and qFas7, overlapped with formerly known fasciation QTLs and spanned candidate genes expressed in ear meristems namely compact plant2 and ramosa1. Our study identified novel ear fasciation, ear prolificacy and tillering loci which are unexpectedly still segregating in elite maize materials, and provides foundation for genomics-assisted breeding for yield components