6 resultados para wound fluid and xanthine oxidase

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent years it is emerged that peripheral arterial disease (PAD) has become a growing health problem in Western countries. This is a progressive manifestation of atherothrombotic vascular disease, which results into the narrowing of the blood vessels of the lower limbs and, as final consequence, in critical leg ischemia. PAD often occurs along with other cardiovascular risk factors, including diabetes mellitus (DM), low-grade inflammation, hypertension, and lipid disorders. Patients with DM have an increased risk of developing PAD, and that risk increases with the duration of DM. Moreover, there is a growing population of patients identified with insulin resistance (IR), impaired glucose tolerance, and obesity, a pathological condition known as “metabolic syndrome”, which presents increased cardiovascular risk. Atherosclerosis is the earliest symptom of PAD and is a dynamic and progressive disease arising from the combination of endothelial dysfunction and inflammation. Endothelial dysfunction is a broad term that implies diminished production or availability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing factors. The secretion of these agents is considerably reduced in association with the major risks of atherosclerosis, especially hyperglycaemia and diabetes, and a reduced vascular repair has been observed in response to wound healing and to ischemia. Neovascularization does not only rely on the proliferation of local endothelial cells, but also involves bone marrow-derived stem cells, referred to as endothelial progenitor cells (EPCs), since they exhibit endothelial surface markers and properties. They can promote postnatal vasculogenesis by homing to, differentiating into an endothelial phenotype, proliferating and incorporating into new vessels. Consequently, EPCs are critical to endothelium maintenance and repair and their dysfunction contributes to vascular disease. The aim of this study has been the characterization of EPCs from healthy peripheral blood, in terms of proliferation, differentiation and function. Given the importance of NO in neovascularization and homing process, it has been investigated the expression of NO synthase (NOS) isoforms, eNOS, nNOS and iNOS, and the effects of their inhibition on EPC function. Moreover, it has been examined the expression of NADPH oxidase (Nox) isoforms which are the principal source of ROS in the cell. In fact, a number of evidences showed the correlation between ROS and NO metabolism, since oxidative stress causes NOS inactivation via enzyme uncoupling. In particular, it has been studied the expression of Nox2 and Nox4, constitutively expressed in endothelium, and Nox1. The second part of this research was focused on the study of EPCs under pathological conditions. Firstly, EPCs isolated from healthy subject were cultured in a hyperglycaemic medium, in order to evaluate the effects of high glucose concentration on EPCs. Secondly, EPCs were isolated from the peripheral blood of patients affected with PAD, both diabetic or not, and it was assessed their capacity to proliferate, differentiate, and to participate to neovasculogenesis. Furthermore, it was investigated the expression of NOS and Nox in these cells. Mononuclear cells isolated from peripheral blood of healthy patients, if cultured under differentiating conditions, differentiate into EPCs. These cells are not able to form capillary-like structures ex novo, but participate to vasculogenesis by incorporation into the new vessels formed by mature endothelial cells, such as HUVECs. With respect to NOS expression, these cells have high levels of iNOS, the inducible isoform of NOS, 3-4 fold higher than in HUVECs. While the endothelial isoform, eNOS, is poorly expressed in EPCs. The higher iNOS expression could be a form of compensation of lower eNOS levels. Under hyperglycaemic conditions, both iNOS and eNOS expression are enhanced compared to control EPCs, as resulted from experimental studies in animal models. In patients affected with PAD, the EPCs may act in different ways. Non-diabetic patients and diabetic patients with a higher vascular damage, evidenced by a higher number of circulating endothelial cells (CECs), show a reduced proliferation and ability to participate to vasculogenesis. On the other hand, diabetic patients with lower CEC number have proliferative and vasculogenic capacity more similar to healthy EPCs. eNOS levels in both patient types are equivalent to those of control, while iNOS expression is enhanced. Interestingly, nNOS is not detected in diabetic patients, analogously to other cell types in diabetics, which show a reduced or no nNOS expression. Concerning Nox expression, EPCs present higher levels of both Nox1 and Nox2, in comparison with HUVECs, while Nox4 is poorly expressed, probably because of uncompleted differentiation into an endothelial phenotype. Nox1 is more expressed in PAD patients, diabetic or not, than in controls, suggesting an increased ROS production. Nox2, instead, is lower in patients than in controls. Being Nox2 involved in cellular response to VEGF, its reduced expression can be referable to impaired vasculogenic potential of PAD patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the field of study related to the stability analysis of fluid saturated porous media is investigated. In particular the contribution of the viscous heating to the onset of convective instability in the flow through ducts is analysed. In order to evaluate the contribution of the viscous dissipation, different geometries, different models describing the balance equations and different boundary conditions are used. Moreover, the local thermal non-equilibrium model is used to study the evolution of the temperature differences between the fluid and the solid matrix in a thermal boundary layer problem. On studying the onset of instability, different techniques for eigenvalue problems has been used. Analytical solutions, asymptotic analyses and numerical solutions by means of original and commercial codes are carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the complex relationships between quantities measured by volcanic monitoring network and shallow magma processes is a crucial headway for the comprehension of volcanic processes and a more realistic evaluation of the associated hazard. This question is very relevant at Campi Flegrei, a volcanic quiescent caldera immediately north-west of Napoli (Italy). The system activity shows a high fumarole release and periodic ground slow movement (bradyseism) with high seismicity. This activity, with the high people density and the presence of military and industrial buildings, makes Campi Flegrei one of the areas with higher volcanic hazard in the world. In such a context my thesis has been focused on magma dynamics due to the refilling of shallow magma chambers, and on the geophysical signals detectable by seismic, deformative and gravimetric monitoring networks that are associated with this phenomenologies. Indeed, the refilling of magma chambers is a process frequently occurring just before a volcanic eruption; therefore, the faculty of identifying this dynamics by means of recorded signal analysis is important to evaluate the short term volcanic hazard. The space-time evolution of dynamics due to injection of new magma in the magma chamber has been studied performing numerical simulations with, and implementing additional features in, the code GALES (Longo et al., 2006), recently developed and still on the upgrade at the Istituto Nazionale di Geofisica e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-mathematical two dimensional, transient model able to treat fluids as multiphase homogeneous mixtures, compressible to incompressible. The fundamental equations of mass, momentum and energy balance are discretised both in time and space using the Galerkin Least-Squares and discontinuity-capturing stabilisation technique. The physical properties of the mixture are computed as a function of local conditions of magma composition, pressure and temperature.The model features enable to study a broad range of phenomenologies characterizing pre and sin-eruptive magma dynamics in a wide domain from the volcanic crater to deep magma feeding zones. The study of displacement field associated with the simulated fluid dynamics has been carried out with a numerical code developed by the Geophysical group at the University College Dublin (O’Brien and Bean, 2004b), with whom we started a very profitable collaboration. In this code, the seismic wave propagation in heterogeneous media with free surface (e.g. the Earth’s surface) is simulated using a discrete elastic lattice where particle interactions are controlled by the Hooke’s law. This method allows to consider medium heterogeneities and complex topography. The initial and boundary conditions for the simulations have been defined within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active volcanoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this thesis contributes, and many researchers experienced on Campi Flegrei in volcanological, seismic, petrological, geochemical fields, etc. collaborate. Numerical simulations of magma and rock dynamis have been coupled as described in the thesis. The first part of the thesis consists of a parametric study aimed at understanding the eect of the presence in magma of carbon dioxide in magma in the convection dynamics. Indeed, the presence of this volatile was relevant in many Campi Flegrei eruptions, including some eruptions commonly considered as reference for a future activity of this volcano. A set of simulations considering an elliptical magma chamber, compositionally uniform, refilled from below by a magma with volatile content equal or dierent from that of the resident magma has been performed. To do this, a multicomponent non-ideal magma saturation model (Papale et al., 2006) that considers the simultaneous presence of CO2 and H2O, has been implemented in GALES. Results show that the presence of CO2 in the incoming magma increases its buoyancy force promoting convection ad mixing. The simulated dynamics produce pressure transients with frequency and amplitude in the sensitivity range of modern geophysical monitoring networks such as the one installed at Campi Flegrei . In the second part, simulations more related with the Campi Flegrei volcanic system have been performed. The simulated system has been defined on the basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered as reference for a future high intensity eruption in this area. The magmatic system has been modelled as a long dyke refilling a small shallow magma chamber; magmas with trachytic and phonolitic composition and variable volatile content of H2O and CO2 have been considered. The simulations have been carried out changing the condition of magma injection, the system configuration (magma chamber geometry, dyke size) and the resident and refilling magma composition and volatile content, in order to study the influence of these factors on the simulated dynamics. Simulation results allow to follow each step of the gas-rich magma ascent in the denser magma, highlighting the details of magma convection and mixing. In particular, the presence of more CO2 in the deep magma results in more ecient and faster dynamics. Through this simulations the variation of the gravimetric field has been determined. Afterward, the space-time distribution of stress resulting from numerical simulations have been used as boundary conditions for the simulations of the displacement field imposed by the magmatic dynamics on rocks. The properties of the simulated domain (rock density, P and S wave velocities) have been based on data from literature on active and passive tomographic experiments, obtained through a collaboration with A. Zollo at the Dept. of Physics of the Federici II Univeristy in Napoli. The elasto-dynamics simulations allow to determine the variations of the space-time distribution of deformation and the seismic signal associated with the studied magmatic dynamics. In particular, results show that these dynamics induce deformations similar to those measured at Campi Flegrei and seismic signals with energies concentrated on the typical frequency bands observed in volcanic areas. The present work shows that an approach based on the solution of equations describing the physics of processes within a magmatic fluid and the surrounding rock system is able to recognise and describe the relationships between geophysical signals detectable on the surface and deep magma dynamics. Therefore, the results suggest that the combined study of geophysical data and informations from numerical simulations can allow in a near future a more ecient evaluation of the short term volcanic hazard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past few years, in veterinary medicine there has been an increased interest in understanding the biology of mesenchymal stem cells (MSCs). This interest comes from their potential clinical use especially in wound repair, tissue engineering and application in therapeutics fields, including regenerative surgery. MSCs can be isolated directly from bone marrow aspirates, adipose tissue, umbilical cord and various foetal tissues. In this study, mesenchymal stem cells were isolated from equine bone marrow, adipose tissue, cord blood, Wharton’s Jelly and, for the first time, amniotic fluid. All these cell lines underwent in vitro differentiation in chondrocytes, osteocytes and adipocytes. After molecular characterization, cells resulted positive for mesenchymal markers such as CD90, CD105, CD44 and negative for CD45, CD14, CD34 and CD73. Adipose tissue and bone marrow mesenchymal stem cells were successfully applied in the treatment of tendinitis in race horses. Furthermore, for the first time in the horse, skin wounds of septicemic foal, were treated applying amniotic stem cells. Finally, results never reported have been obtained in the present study, isolating mesenchymal stem cells from domestic cat foetal fluid and membranes. All cell lines underwent in vitro differentiation and expressed mesenchymal molecular markers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria have a central role in energy supply in cells, ROS production and apoptosis and have been implicated in several human disease and mitochondrial dysfunctions in hypoxia have been related with disorders like Type II Diabetes, Alzheimer Disease, inflammation, cancer and ischemia/reperfusion in heart. When oxygen availability becomes limiting in cells, mitochondrial functions are modulated to allow biologic adaptation. Cells exposed to a reduced oxygen concentration readily respond by adaptive mechanisms to maintain the physiological ATP/ADP ratio, essential for their functions and survival. In the beginning, the AMP-activated protein kinase (AMPK) pathway is activated, but the responsiveness to prolonged hypoxia requires the stimulation of hypoxia-inducible factors (HIFs). In this work we report a study of the mitochondrial bioenergetics of primary cells exposed to a prolonged hypoxic period . To shine light on this issue we examined the bioenergetics of fibroblast mitochondria cultured in hypoxic atmospheres (1% O2) for 72 hours. Here we report on the mitochondrial organization in cells and on their contribution to the cellular energy state. Our results indicate that prolonged hypoxia cause a significant reduction of mitochondrial mass and of the quantity of the oxidative phosphorylation complexes. Hypoxia is also responsible to damage mitochondrial complexes as shown after normalization versus citrate synthase activity. HIF-1α plays a pivotal role in wound healing, and its expression in the multistage process of normal wound healing has been well characterized, it is necessary for cell motility, expression of angiogenic growth factor and recruitment of endothelial progenitor cells. We studied hypoxia in the pathological status of diabetes and complications of diabetes and we evaluated the combined effect of hyperglycemia and hypoxia on human dermal fibroblasts (HDFs) and human dermal micro-vascular endothelial cells (HDMECs) that were grown in high glucose, low glucose concentrations and mannitol as control for the osmotic challenge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element techniques for solving the problem of fluid-structure interaction of an elastic solid material in a laminar incompressible viscous flow are described. The mathematical problem consists of the Navier-Stokes equations in the Arbitrary Lagrangian-Eulerian formulation coupled with a non-linear structure model, considering the problem as one continuum. The coupling between the structure and the fluid is enforced inside a monolithic framework which computes simultaneously for the fluid and the structure unknowns within a unique solver. We used the well-known Crouzeix-Raviart finite element pair for discretization in space and the method of lines for discretization in time. A stability result using the Backward-Euler time-stepping scheme for both fluid and solid part and the finite element method for the space discretization has been proved. The resulting linear system has been solved by multilevel domain decomposition techniques. Our strategy is to solve several local subproblems over subdomain patches using the Schur-complement or GMRES smoother within a multigrid iterative solver. For validation and evaluation of the accuracy of the proposed methodology, we present corresponding results for a set of two FSI benchmark configurations which describe the self-induced elastic deformation of a beam attached to a cylinder in a laminar channel flow, allowing stationary as well as periodically oscillating deformations, and for a benchmark proposed by COMSOL multiphysics where a narrow vertical structure attached to the bottom wall of a channel bends under the force due to both viscous drag and pressure. Then, as an example of fluid-structure interaction in biomedical problems, we considered the academic numerical test which consists in simulating the pressure wave propagation through a straight compliant vessel. All the tests show the applicability and the numerical efficiency of our approach to both two-dimensional and three-dimensional problems.