3 resultados para whether multiple penalties permitted
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Introduction. Neutrophil Gelatinase-Associated Lipocalin (NGAL) belongs to the family of lipocalins and it is produced by several cell types, including renal tubular epithelium. In the kidney its production increases during acute damage and this is reflected by the increase in serum and urine levels. In animal studies and clinical trials, NGAL was found to be a sensitive and specific indicator of acute kidney injury (AKI). Purpose. The aim of this work was to investigate, in a prospective manner, whether urine NGAL can be used as a marker in preeclampsia, kidney transplantation, VLBI and diabetic nephropathy. Materials and methods. The study involved 44 consecutive patients who received renal transplantation; 18 women affected by preeclampsia (PE); a total of 55 infants weighing ≤1500 g and 80 patients with Type 1 diabetes. Results. A positive correlation was found between urinary NGAL and 24 hours proteinuria within the PE group. The detection of higher uNGAL values in case of severe PE, even in absence of statistical significance, confirms that these women suffer from an initial renal damage. In our population of VLBW infants, we found a positive correlation of uNGAL values at birth with differences in sCreat and eGFR values from birth to day 21, but no correlation was found between uNGAL values at birth and sCreat and eGFR at day 7. systolic an diastolic blood pressure decreased with increasing levels of uNGAL. The patients with uNGAL <25 ng/ml had significantly higher levels of systolic blood pressure compared with the patients with uNGAL >50 ng/ml ( p<0.005). Our results indicate the ability of NGAL to predict the delay in functional recovery of the graft. Conclusions. In acute renal pathology, urinary NGAL confirms to be a valuable predictive marker of the progress and status of acute injury.
Resumo:
The objective of this study is to provide empirical evidence on how ownership structure and owner’s identity affect performance, in the banking industry by using a panel of Indonesia banks over the period 2000–2009. Firstly, we analysed the impact of the presence of multiple blockholders on bank ownership structure and performance. Building on multiple agency and principal-principal theories, we investigated whether the presence and shares dispersion across blockholders with different identities (i.e. central and regional government; families; foreign banks and financial institutions) affected bank performance, in terms of profitability and efficiency. We found that the number of blockholders has a negative effect on banks’ performance, while blockholders’ concentration has a positive effect. Moreover, we observed that the dispersion of ownership across different types of blockholders has a negative effect on banks’ performance. We interpret such results as evidence that, when heterogeneous blockholders are present, the disadvantage from conflicts of interests between blockholders seems to outweigh the advantage of the increase in additional monitoring by additional blockholder. Secondly, we conducted a joint analysis of the static, selection, and dynamic effects of different types of ownership on banks’ performance. We found that regional banks and foreign banks have a higher profitability and efficiency as compared to domestic private banks. In the short-run, foreign acquisitions and domestic M&As reduce the level of overhead costs, while in the long-run they increase the Net Interest Margin (NIM). Further, we analysed NIM determinants, to asses the impact of ownership on bank business orientation. Our findings lend support to our prediction that the NIM determinants differs accordingly to the type of bank ownership. We also observed that banks that experienced changes in ownership, such as foreign-acquired banks, manifest different interest margin determinants with respect to domestic or foreign banks that did not experience ownership rearrangements.
Resumo:
The presence of multiple stellar populations in globular clusters (GCs) is now well accepted, however, very little is known regarding their origin. In this Thesis, I study how multiple populations formed and evolved by means of customized 3D numerical simulations, in light of the most recent data from spectroscopic and photometric observations of Local and high-redshift Universe. Numerical simulations are the perfect tool to interpret these data: hydrodynamic simulations are suited to study the early phases of GCs formation, to follow in great detail the gas behavior, while N-body codes permit tracing the stellar component. First, we study the formation of second-generation stars in a rotating massive GC. We assume that second-generation stars are formed out of asymptotic giant branch stars (AGBs) ejecta, diluted by external pristine gas. We find that, for low pristine gas density, stars mainly formed out of AGBs ejecta rotate faster than stars formed out of more diluted gas, in qualitative agreement with current observations. Then, assuming a similar setup, we explored whether Type Ia supernovae affect the second- generation star formation and their chemical composition. We show that the evolution depends on the density of the infalling gas, but, in general, an iron spread is developed, which may explain the spread observed in some massive GCs. Finally, we focused on the long-term evolution of a GC, composed of two populations and orbiting the Milky Way disk. We have derived that, for an extended first population and a low-mass second one, the cluster loses almost 98 percent of its initial first population mass and the GC mass can be as much as 20 times less after a Hubble time. Under these conditions, the derived fraction of second-population stars reproduces the observed value, which is one of the strongest constraints of GC mass loss.