5 resultados para visual half-field
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis will focus on the residual function and visual and attentional deficits in human patients, which accompany damage to the visual cortex or its thalamic afferents, and plastic changes, which follow it. In particular, I will focus on homonymous visual field defects, which comprise a broad set of central disorders of vision. I will present experimental evidence that when the primary visual pathway is completely damaged, the only signal that can be implicitly processed via subcortical visual networks is fear. I will also present data showing that in a patient with relative deafferentation of visual cortex, changes in the spatial tuning and response gain of the contralesional and ipsilesional cortex are observed, which are accompanied by changes in functional connectivity with regions belonging to the dorsal attentional network and the default mode network. I will also discuss how cortical plasticity might be harnessed to improve recovery through novel treatments. Moreover, I will show how treatment interventions aimed at recruiting spared subcortical pathway supporting multisensory orienting can drive network level change.
Resumo:
This thesis deals with Visual Servoing and its strictly connected disciplines like projective geometry, image processing, robotics and non-linear control. More specifically the work addresses the problem to control a robotic manipulator through one of the largely used Visual Servoing techniques: the Image Based Visual Servoing (IBVS). In Image Based Visual Servoing the robot is driven by on-line performing a feedback control loop that is closed directly in the 2D space of the camera sensor. The work considers the case of a monocular system with the only camera mounted on the robot end effector (eye in hand configuration). Through IBVS the system can be positioned with respect to a 3D fixed target by minimizing the differences between its initial view and its goal view, corresponding respectively to the initial and the goal system configurations: the robot Cartesian Motion is thus generated only by means of visual informations. However, the execution of a positioning control task by IBVS is not straightforward because singularity problems may occur and local minima may be reached where the reached image is very close to the target one but the 3D positioning task is far from being fulfilled: this happens in particular for large camera displacements, when the the initial and the goal target views are noticeably different. To overcame singularity and local minima drawbacks, maintaining the good properties of IBVS robustness with respect to modeling and camera calibration errors, an opportune image path planning can be exploited. This work deals with the problem of generating opportune image plane trajectories for tracked points of the servoing control scheme (a trajectory is made of a path plus a time law). The generated image plane paths must be feasible i.e. they must be compliant with rigid body motion of the camera with respect to the object so as to avoid image jacobian singularities and local minima problems. In addition, the image planned trajectories must generate camera velocity screws which are smooth and within the allowed bounds of the robot. We will show that a scaled 3D motion planning algorithm can be devised in order to generate feasible image plane trajectories. Since the paths in the image are off-line generated it is also possible to tune the planning parameters so as to maintain the target inside the camera field of view even if, in some unfortunate cases, the feature target points would leave the camera images due to 3D robot motions. To test the validity of the proposed approach some both experiments and simulations results have been reported taking also into account the influence of noise in the path planning strategy. The experiments have been realized with a 6DOF anthropomorphic manipulator with a fire-wire camera installed on its end effector: the results demonstrate the good performances and the feasibility of the proposed approach.
Resumo:
The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.
Resumo:
Introduction and aims of the research Nitric oxide (NO) and endocannabinoids (eCBs) are major retrograde messengers, involved in synaptic plasticity (long-term potentiation, LTP, and long-term depression, LTD) in many brain areas (including hippocampus and neocortex), as well as in learning and memory processes. NO is synthesized by NO synthase (NOS) in response to increased cytosolic Ca2+ and mainly exerts its functions through soluble guanylate cyclase (sGC) and cGMP production. The main target of cGMP is the cGMP-dependent protein kinase (PKG). Activity-dependent release of eCBs in the CNS leads to the activation of the Gαi/o-coupled cannabinoid receptor 1 (CB1) at both glutamatergic and inhibitory synapses. The perirhinal cortex (Prh) is a multimodal associative cortex of the temporal lobe, critically involved in visual recognition memory. LTD is proposed to be the cellular correlate underlying this form of memory. Cholinergic neurotransmission has been shown to play a critical role in both visual recognition memory and LTD in Prh. Moreover, visual recognition memory is one of the main cognitive functions impaired in the early stages of Alzheimer’s disease. The main aim of my research was to investigate the role of NO and ECBs in synaptic plasticity in rat Prh and in visual recognition memory. Part of this research was dedicated to the study of synaptic transmission and plasticity in a murine model (Tg2576) of Alzheimer’s disease. Methods Field potential recordings. Extracellular field potential recordings were carried out in horizontal Prh slices from Sprague-Dawley or Dark Agouti juvenile (p21-35) rats. LTD was induced with a single train of 3000 pulses delivered at 5 Hz (10 min), or via bath application of carbachol (Cch; 50 μM) for 10 min. LTP was induced by theta-burst stimulation (TBS). In addition, input/output curves and 5Hz-LTD were carried out in Prh slices from 3 month-old Tg2576 mice and littermate controls. Behavioural experiments. The spontaneous novel object exploration task was performed in intra-Prh bilaterally cannulated adult Dark Agouti rats. Drugs or vehicle (saline) were directly infused into the Prh 15 min before training to verify the role of nNOS and CB1 in visual recognition memory acquisition. Object recognition memory was tested at 20 min and 24h after the end of the training phase. Results Electrophysiological experiments in Prh slices from juvenile rats showed that 5Hz-LTD is due to the activation of the NOS/sGC/PKG pathway, whereas Cch-LTD relies on NOS/sGC but not PKG activation. By contrast, NO does not appear to be involved in LTP in this preparation. Furthermore, I found that eCBs are involved in LTP induction, but not in basal synaptic transmission, 5Hz-LTD and Cch-LTD. Behavioural experiments demonstrated that the blockade of nNOS impairs rat visual recognition memory tested at 24 hours, but not at 20 min; however, the blockade of CB1 did not affect visual recognition memory acquisition tested at both time points specified. In three month-old Tg2576 mice, deficits in basal synaptic transmission and 5Hz-LTD were observed compared to littermate controls. Conclusions The results obtained in Prh slices from juvenile rats indicate that NO and CB1 play a role in the induction of LTD and LTP, respectively. These results are confirmed by the observation that nNOS, but not CB1, is involved in visual recognition memory acquisition. The preliminary results obtained in the murine model of Alzheimer’s disease indicate that deficits in synaptic transmission and plasticity occur very early in Prh; further investigations are required to characterize the molecular mechanisms underlying these deficits.
Resumo:
Lesions to the primary geniculo-striate visual pathway cause blindness in the contralesional visual field. Nevertheless, previous studies have suggested that patients with visual field defects may still be able to implicitly process the affective valence of unseen emotional stimuli (affective blindsight) through alternative visual pathways bypassing the striate cortex. These alternative pathways may also allow exploitation of multisensory (audio-visual) integration mechanisms, such that auditory stimulation can enhance visual detection of stimuli which would otherwise be undetected when presented alone (crossmodal blindsight). The present dissertation investigated implicit emotional processing and multisensory integration when conscious visual processing is prevented by real or virtual lesions to the geniculo-striate pathway, in order to further clarify both the nature of these residual processes and the functional aspects of the underlying neural pathways. The present experimental evidence demonstrates that alternative subcortical visual pathways allow implicit processing of the emotional content of facial expressions in the absence of cortical processing. However, this residual ability is limited to fearful expressions. This finding suggests the existence of a subcortical system specialised in detecting danger signals based on coarse visual cues, therefore allowing the early recruitment of flight-or-fight behavioural responses even before conscious and detailed recognition of potential threats can take place. Moreover, the present dissertation extends the knowledge about crossmodal blindsight phenomena by showing that, unlike with visual detection, sound cannot crossmodally enhance visual orientation discrimination in the absence of functional striate cortex. This finding demonstrates, on the one hand, that the striate cortex plays a causative role in crossmodally enhancing visual orientation sensitivity and, on the other hand, that subcortical visual pathways bypassing the striate cortex, despite affording audio-visual integration processes leading to the improvement of simple visual abilities such as detection, cannot mediate multisensory enhancement of more complex visual functions, such as orientation discrimination.