4 resultados para variance ratio test

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Model misspecification affects the classical test statistics used to assess the fit of the Item Response Theory (IRT) models. Robust tests have been derived under model misspecification, as the Generalized Lagrange Multiplier and Hausman tests, but their use has not been largely explored in the IRT framework. In the first part of the thesis, we introduce the Generalized Lagrange Multiplier test to detect differential item response functioning in IRT models for binary data under model misspecification. By means of a simulation study and a real data analysis, we compare its performance with the classical Lagrange Multiplier test, computed using the Hessian and the cross-product matrix, and the Generalized Jackknife Score test. The power of these tests is computed empirically and asymptotically. The misspecifications considered are local dependence among items and non-normal distribution of the latent variable. The results highlight that, under mild model misspecification, all tests have good performance while, under strong model misspecification, the performance of the tests deteriorates. None of the tests considered show an overall superior performance than the others. In the second part of the thesis, we extend the Generalized Hausman test to detect non-normality of the latent variable distribution. To build the test, we consider a seminonparametric-IRT model, that assumes a more flexible latent variable distribution. By means of a simulation study and two real applications, we compare the performance of the Generalized Hausman test with the M2 limited information goodness-of-fit test and the Likelihood-Ratio test. Additionally, the information criteria are computed. The Generalized Hausman test has a better performance than the Likelihood-Ratio test in terms of Type I error rates and the M2 test in terms of power. The performance of the Generalized Hausman test and the information criteria deteriorates when the sample size is small and with a few items.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the first underground nuclear explosion, carried out in 1958, the analysis of seismic signals generated by these sources has allowed seismologists to refine the travel times of seismic waves through the Earth and to verify the accuracy of the location algorithms (the ground truth for these sources was often known). Long international negotiates have been devoted to limit the proliferation and testing of nuclear weapons. In particular the Treaty for the comprehensive nuclear test ban (CTBT), was opened to signatures in 1996, though, even if it has been signed by 178 States, has not yet entered into force, The Treaty underlines the fundamental role of the seismological observations to verify its compliance, by detecting and locating seismic events, and identifying the nature of their sources. A precise definition of the hypocentral parameters represents the first step to discriminate whether a given seismic event is natural or not. In case that a specific event is retained suspicious by the majority of the State Parties, the Treaty contains provisions for conducting an on-site inspection (OSI) in the area surrounding the epicenter of the event, located through the International Monitoring System (IMS) of the CTBT Organization. An OSI is supposed to include the use of passive seismic techniques in the area of the suspected clandestine underground nuclear test. In fact, high quality seismological systems are thought to be capable to detect and locate very weak aftershocks triggered by underground nuclear explosions in the first days or weeks following the test. This PhD thesis deals with the development of two different seismic location techniques: the first one, known as the double difference joint hypocenter determination (DDJHD) technique, is aimed at locating closely spaced events at a global scale. The locations obtained by this method are characterized by a high relative accuracy, although the absolute location of the whole cluster remains uncertain. We eliminate this problem introducing a priori information: the known location of a selected event. The second technique concerns the reliable estimates of back azimuth and apparent velocity of seismic waves from local events of very low magnitude recorded by a trypartite array at a very local scale. For the two above-mentioned techniques, we have used the crosscorrelation technique among digital waveforms in order to minimize the errors linked with incorrect phase picking. The cross-correlation method relies on the similarity between waveforms of a pair of events at the same station, at the global scale, and on the similarity between waveforms of the same event at two different sensors of the try-partite array, at the local scale. After preliminary tests on the reliability of our location techniques based on simulations, we have applied both methodologies to real seismic events. The DDJHD technique has been applied to a seismic sequence occurred in the Turkey-Iran border region, using the data recorded by the IMS. At the beginning, the algorithm was applied to the differences among the original arrival times of the P phases, so the cross-correlation was not used. We have obtained that the relevant geometrical spreading, noticeable in the standard locations (namely the locations produced by the analysts of the International Data Center (IDC) of the CTBT Organization, assumed as our reference), has been considerably reduced by the application of our technique. This is what we expected, since the methodology has been applied to a sequence of events for which we can suppose a real closeness among the hypocenters, belonging to the same seismic structure. Our results point out the main advantage of this methodology: the systematic errors affecting the arrival times have been removed or at least reduced. The introduction of the cross-correlation has not brought evident improvements to our results: the two sets of locations (without and with the application of the cross-correlation technique) are very similar to each other. This can be commented saying that the use of the crosscorrelation has not substantially improved the precision of the manual pickings. Probably the pickings reported by the IDC are good enough to make the random picking error less important than the systematic error on travel times. As a further justification for the scarce quality of the results given by the cross-correlation, it should be remarked that the events included in our data set don’t have generally a good signal to noise ratio (SNR): the selected sequence is composed of weak events ( magnitude 4 or smaller) and the signals are strongly attenuated because of the large distance between the stations and the hypocentral area. In the local scale, in addition to the cross-correlation, we have performed a signal interpolation in order to improve the time resolution. The algorithm so developed has been applied to the data collected during an experiment carried out in Israel between 1998 and 1999. The results pointed out the following relevant conclusions: a) it is necessary to correlate waveform segments corresponding to the same seismic phases; b) it is not essential to select the exact first arrivals; and c) relevant information can be also obtained from the maximum amplitude wavelet of the waveforms (particularly in bad SNR conditions). Another remarkable point of our procedure is that its application doesn’t demand a long time to process the data, and therefore the user can immediately check the results. During a field survey, such feature will make possible a quasi real-time check allowing the immediate optimization of the array geometry, if so suggested by the results at an early stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Decreased exercise capacity, and reduction in peak oxygen uptake are present in most patients affected by hypertrophic cardiomyopathy (HCM) . In addition an abnormal blood pressure response during a maximal exercise test was seen to be associated with high risk for sudden cardiac death in adult patients affected by HCM. Therefore exercise test (CPET) has become an important part of the evaluation of the HCM patients, but data on its role in patients with HCM in the pediatric age are quite limited. Methods and results Between 2004 and 2010, using CPET and echocardiography, we studied 68 children (mean age 13.9 ± 2 years) with HCM. The exercise test was completed by all the patients without adverse complications. The mean value of achieved VO2 max was 31.4 ± 8.3 mL/Kg/min which corresponded to 77.5 ± 16.9 % of predicted range. 51 patients (75%) reached a subnormal value of VO2max. On univariate analysis the achieved VO2 as percentage of predicted and the peak exercise systolic blood pressure (BP) Z score were inversely associated with max left ventricle (LV) wall thickness, with E/Ea ratio, and directly related with Ea and Sa wave velocities No association was found with the LV outflow tract gradient. During a mean follow up of 2.16 ± 1.7 years 9 patients reached the defined clinical end point of death, transplantation, implanted cardioverter defibrillator (ICD) shock, ICD implantation for secondary prevention or myectomy. Patients with peak VO2 < 52% or with peak systolic BP Z score < -5.8 had lower event free survival at follow up. Conclusions Exercise capacity is decreased in patients with HCM in pediatric age and global ventricular function seems being the most important determinant of exercise capacity in these patients. CPET seems to play an important role in prognostic stratification of children affected by HCM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first chapter, I develop a panel no-cointegration test which extends Pesaran, Shin and Smith (2001)'s bounds test to the panel framework by considering the individual regressions in a Seemingly Unrelated Regression (SUR) system. This allows to take into account unobserved common factors that contemporaneously affect all the units of the panel and provides, at the same time, unit-specific test statistics. Moreover, the approach is particularly suited when the number of individuals of the panel is small relatively to the number of time series observations. I develop the algorithm to implement the test and I use Monte Carlo simulation to analyze the properties of the test. The small sample properties of the test are remarkable, compared to its single equation counterpart. I illustrate the use of the test through a test of Purchasing Power Parity in a panel of EU15 countries. In the second chapter of my PhD thesis, I verify the Expectation Hypothesis of the Term Structure in the repurchasing agreements (repo) market with a new testing approach. I consider an "inexact" formulation of the EHTS, which models a time-varying component in the risk premia and I treat the interest rates as a non-stationary cointegrated system. The effect of the heteroskedasticity is controlled by means of testing procedures (bootstrap and heteroskedasticity correction) which are robust to variance and covariance shifts over time. I fi#nd that the long-run implications of EHTS are verified. A rolling window analysis clarifies that the EHTS is only rejected in periods of turbulence of #financial markets. The third chapter introduces the Stata command "bootrank" which implements the bootstrap likelihood ratio rank test algorithm developed by Cavaliere et al. (2012). The command is illustrated through an empirical application on the term structure of interest rates in the US.