7 resultados para used lubricating oil
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Satellite remote sensing has proved to be an effective support in timely detection and monitoring of marine oil pollution, mainly due to illegal ship discharges. In this context, we have developed a new methodology and technique for optical oil spill detection, which make use of MODIS L2 and MERIS L1B satellite top of atmosphere (TOA) reflectance imagery, for the first time in a highly automated way. The main idea was combining wide swaths and short revisit times of optical sensors with SAR observations, generally used in oil spill monitoring. This arises from the necessity to overcome the SAR reduced coverage and long revisit time of the monitoring area. This can be done now, given the MODIS and MERIS higher spatial resolution with respect to older sensors (250-300 m vs. 1 km), which consents the identification of smaller spills deriving from illicit discharge at sea. The procedure to obtain identifiable spills in optical reflectance images involves removal of oceanic and atmospheric natural variability, in order to enhance oil-water contrast; image clustering, which purpose is to segment the oil spill eventually presents in the image; finally, the application of a set of criteria for the elimination of those features which look like spills (look-alikes). The final result is a classification of oil spill candidate regions by means of a score based on the above criteria.
Resumo:
The traditional lime mortar is composed of hydrated lime, sand and water. Besides these constituents it may also contain additives aiming to modify fresh mortar´s properties and/or to improve hardened mortar´s strength and durability. Already in the first civilizations various additives were used to enhance mortar´s quality, among the organic additives, linseed oil was one of the most common. From literature we know that it was used already in Roman period to reduce water permeability of a mortar, but the mechanism and the technology, e.g. effects of different dosages, are not clearly explained. There are only few works studying the effect of oil experimentally. Knowing the function of oil in historical mortars is important for designing a new compatible repair mortar. Moreover, linseed oil addition could increase the sometimes insufficient durability of lime-based mortars used for reparation and it could be a natural alternative to synthetic additives. In the present study, the effect of linseed oil on the properties of six various lime-based mortars has been studied. Mortars´ compositions have been selected with respect to composition of historical mortars, but also mortars used in a modern restoration practise have been tested. Oil was added in two different concentrations – 1% and 3% by the weight of binder. The addition of 1% of linseed oil has proved to have positive effect on mortars´ properties. It improves mechanical characteristics and limits water absorption into mortar without affecting significantly the total open porosity or decreasing the degree of carbonation. On the other hand, the 3% addition of linseed oil is making mortar to be almost hydrophobic, but it markedly decreases mortars´ strength. However, all types of tested lime-based mortars with the oil addition showed significantly decreased water and salt solution absorption by capillary rise. Addition of oil into mortars is also decreasing the proportion of pores which are easily accessible to water. Furthermore, mortars with linseed oil showed significantly improved resistance to salt crystallization and freeze-thaw cycles. On the base of the obtained results, the addition of 1% of linseed oil can be taken into consideration in the design of mortars meant to repair or replace historic mortars.
Resumo:
Drying oils, and in particular linseed oil, were the most common binding media employed in painting between XVI and XIX centuries. Artists usually operated some pre-treatments on the oils to obtain binders with modified properties, such as different handling qualities or colour. Oil processing has a key role on the subsequent ageing of and degradation of linseed oil paints. In this thesis a multi-analytical approach was adopted to investigate the drying, polymerization and oxidative degradation of the linseed oil paints. In particular, thermogravimetry analysis (TGA), yielding information on the macromolecular scale, were compared with gas-chromatography mass-spectrometry (GC-MS) and direct exposure mass spectrometry (DEMS) providing information on the molecular scale. The study was performed on linseed oils and paint reconstructions prepared according to an accurate historical description of the painting techniques of the 19th century. TGA revealed that during ageing the molecular weight of the oils changes and that higher molecular weight fractions formed. TGA proved to be an excellent tool to compare the oils and paint reconstructions. This technique is able to highlight the different physical behaviour of oils that were processed using different methods and of paint layers on the basis of the different processed oil and /or the pigment used. GC/MS and DE-MS were used to characterise the soluble and non-polymeric fraction of the oils and paint reconstructions. GC/MS allowed us to calculate the ratios of palmitic to stearic acid (P/S), and azelaic to palmitic acid (A/P) and to evaluate effects produced by oil pre-treatments and the presence of different pigments. This helps to understand the role of the pre-treatments and of the pigments on the oxidative degradation undergone by siccative oils during ageing. DE-MS enabled the various molecular weight fractions of the samples to be simultaneously studied, and thus helped to highlight the presence of oxidation and hydrolysis reactions, and the formation of carboxylates that occur during ageing and with the changing of the oil pre-treatments and the pigments. The combination of thermal analysis with molecular techniques such as GC-MS, DEMS and FTIR enabled a model to be developed, for unravelling some crucial issues: 1) how oil pre-treatments produce binders with different physical-chemical qualities, and how this can influence the ageing of an oil paint film; 2) which is the role of the interaction between oil and pigments in the ageing and degradation process.
Resumo:
Food packaging protects food, but it can sometimes become a source of undesired contaminants. Paper based materials, despite being perceived as “natural” and safe, can contain volatile contaminants (especially if made from recycled paper) able to migrate to food, as mineral oil, phthalates and photoinitiators. Mineral oil is a petroleum product used as printing ink solvent for newspapers, magazines and packaging. From paperboard printing and from recycled fibers (if present), mineral oil migrates into food, even if dry, through the gas phase. Its toxicity is not fully evaluated, but a temporary Acceptable Daily Intake (ADI) of 0.6 mg kg-1 has been established for saturated mineral oil hydrocarbons (MOSH), while aromatic hydrocarbons (MOAH) are more toxic. Extraction and analysis of MOSH and MOAH is difficult due to the thousands of molecules present. Extraction methods for packaging and food have been optimized, then applied for a “shopping trolley survey” on over 100 Italian and Swiss market products. Instrumental analyses were performed with online LC-GC/FID. Average concentration of MOSH in paperboards was 626 mg kg-1. Many had the potential of contaminating foods exceeding temporary ADI tens of times. A long term migration study was then designed to better understand migration kinetics. Egg pasta and müesli were chosen as representative (high surface/weight ratio). They were stored at different temperatures (4, 20, 30, 40 and 60°C) and conditions (free, shelved or boxed packs) for 1 year. MOSH and MOAH kinetic curves show that migration is a fast process, mostly influenced by temperature: in egg pasta (food in direct contact with paperboard), half of MOSH is transferred to food in a week at 40°C and in 8 months at 20°C. The internal plastic bag present in müesli slowed down the startup of migration, creating a “lag time” in the curves.
Resumo:
Minor components are of particular interest due to their antioxidant and biological properties. Various classes of lipophilic minor components (plant sterols (PS) and α-tocopherol) were selected as they are widely used in the food industry. A Fast GC-MS method for PS analysis in functional dairy products was set up. The analytical performance and significant reduction of the analysis time and consumables, demonstrated that Fast GC-MS could be suitable for the PS analysis in functional dairy products. Due to their chemical structure, PS can undergo oxidation, which could be greatly impacted by matrix nature/composition and thermal treatments. The oxidative stability of PS during microwave heating was evaluated. Two different model systems (PS alone and in combination) were heated up to 30 min at 1000 W. PS degraded faster when they were alone than in presence of TAG. The extent of PS degradation depends on both heating time and the surrounding medium, which can impact the quality and safety of the food product destined to microwave heating/cooking. Many minor lipid components are included in emulsion systems and can affect the rate of lipid oxidation. The oxidative stability of oil-in-water (O/W) emulsions containing PS esters, ω-3 FA and phenolic compounds, were evaluated after a 14-day storage at room temperature. Due to their surface active character, PS could be particularly prone to oxidation when they are incorporated in emulsions, as they are more exposed to water-soluble prooxidants. Finally, some minor lipophilic components may increase oxidative stability of food systems due to their antioxidant activity. á-tocopherol partitioning and antioxidant activity was determined in the presence of excess SDS in stripped soybean O/W emulsions. Results showed that surfactant micelles could play a key role as an antioxidant carrier, by potentially increasing the accessibility of hydrophobic antioxidant to the interface.
Resumo:
The purpose of this thesis work was the valorization of the main by-products obtained from olive oil production chain (wastewater and pomace) and their utilization in innovative food formulation. In the first part of the thesis, an olive mill wastewater extract rich in phenols were used in the formulation of 3 innovative meat products: beef hamburgers, cooked ham and würstels. These studies confirms that olive mill wastewaters extract rich in phenols could be an alternative for the reduction/total replacement of additives (i.e., nitrites) in ground and cooked meat preparations, which would promote the formulation of healthier clean label products and improve the sustainability of the olive oil industry with a circular economy approach, by further valorizing this olive by-product. In the second part of the thesis, the lipid composition and oxidative stability of a spreadable product obtained from a fermented and biologically de-bittered olive pomace, was assessed during a shelf-life study. This study confirmed that olive pomace represents an excellent ingredient for the formulation of functional foods In the third and last part of the thesis, carried out at the Universidad de Navarra (Pamplona, Spain), during a period abroad (3 months), three extracts obtained from purification of olive mill wastewaters, were subjected to in-vitro digestion and characterized. From the analysis of the three phenolic extracts, it emerged that the most promising extract to be used in the food field is the spry-dried one. Thanks to its formulation containing maltodextrins it manages to maintain its antioxidant capacity even after being underwent to in-vitro digestion. This thesis work is a part of the PRIN 2015 project (PROT: 20152LFKAT) "Olive phenols as multifunctional bioactives for healthier food: evaluation of simplified formulation to obtain safe meat products and new foods with higher functionality", coordinated by University of Perugia.
Resumo:
In this study, it was investigated the possibility of using a geopolymeric membrane as an alternative to the expensive ceramic ones. The goal was to synthesise a low-cost membrane made entirely of geopolymer that can perform equally to commercial membranes. This study initially investigated the feasibility of preparing a microporous support suitable for microfiltration through casting and pressing techniques. Subsequently, a selective geopolymeric layer was developed and deposited on the support, with the capability to operate within the microfiltration range and to effectively separate oil from oil-water emulsions. In order to evaluate the performance, the properties of the geopolymeric supports obtained through pressing were carefully evaluated during the experimentation phase investigating the effect of varying parameters such as sodium silicate content, water content, and applied pressure. The results obtained from these evaluations showed that it is possible to produce supports with excellent porosity and highly controlled narrow pore size distributions. The most promising geopolymeric pressed support was then used for the deposition of a selective layer on its surface. Following physical characterization, it was confirmed that the resulting geopolymer membrane was suitable for use in the microfiltration range. Subsequently, the membrane was tested for its ability to separate oil from water using various emulsions prepared with different surfactants at different concentrations and pH. The results revealed that the fluxes were highly dependent on the electrostatic interaction between the membrane and the emulsion, with best results being obtained with emulsions prepared using anionic surfactants. The rejection rate of the membrane was also found to be extremely high, with values over 95%, comparable to a commercial ceramic membrane. This suggests that geopolymer membranes are suitable alternatives to ceramic membranes, offering the added benefits of lower cost and reduced environmental impact during production.