5 resultados para usage-based
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
La tesi sviluppa le proposte teoriche della Linguistica Cognitiva a proposito della metafora e propone una loro possibile applicazione in ambito didattico. La linguistica cognitiva costituisce la cornice interpretativa della ricerca, a partire dai suoi concetti principali: la prospettiva integrata, l’embodiment, la centralità della semantica, l’attenzione per la psicolinguistica e le neuroscienze. All’interno di questo panorama, prende vigore un’idea di metafora come punto d’incontro tra lingua e pensiero, come criterio organizzatore delle conoscenze, strumento conoscitivo fondamentale nei processi di apprendimento. A livello didattico, la metafora si rivela imprescindibile sia come strumento operativo che come oggetto di riflessione. L’approccio cognitivista può fornire utili indicazioni su come impostare un percorso didattico sulla metafora. Nel presente lavoro, si indaga in particolare l’uso didattico di stimoli non verbali nel rafforzamento delle competenze metaforiche di studenti di scuola media. Si è scelto come materiale di partenza la pubblicità, per due motivi: il diffuso impiego di strategie retoriche in ambito pubblicitario e la specificità comunicativa del genere, che permette una chiara disambiguazione di fenomeni che, in altri contesti, non potrebbero essere analizzati con la stessa univocità. Si presenta dunque un laboratorio finalizzato al miglioramento della competenza metaforica degli studenti che si avvale di due strategie complementari: da una parte, una spiegazione ispirata ai modelli cognitivisti, sia nella terminologia impiegata che nella modalità di analisi (di tipo usage-based); dall’altra un training con metafore visive in pubblicità, che comprende una fase di analisi e una fase di produzione. È stato usato un test, suddiviso in compiti specifici, per oggettivare il più possibile i progressi degli studenti alla fine del training, ma anche per rilevare le difficoltà e i punti di forza nell’analisi rispetto sia ai contesti d’uso (letterario e convenzionale) sia alle forme linguistiche assunte dalla metafora (nominale, verbale, aggettivale).
Resumo:
Dielectric Elastomers (DE) are incompressible dielectrics which can experience deviatoric (isochoric) finite deformations in response to applied large electric fields. Thanks to the strong electro-mechanical coupling, DE intrinsically offer great potentialities for conceiving novel solid-state mechatronic devices, in particular linear actuators, which are more integrated, lightweight, economic, silent, resilient and disposable than equivalent devices based on traditional technologies. Such systems may have a huge impact in applications where the traditional technology does not allow coping with the limits of weight or encumbrance, and with problems involving interaction with humans or unknown environments. Fields such as medicine, domotic, entertainment, aerospace and transportation may profit. For actuation usage, DE are typically shaped in thin films coated with compliant electrodes on both sides and piled one on the other to form a multilayered DE. DE-based Linear Actuators (DELA) are entirely constituted by polymeric materials and their overall performance is highly influenced by several interacting factors; firstly by the electromechanical properties of the film, secondly by the mechanical properties and geometry of the polymeric frame designed to support the film, and finally by the driving circuits and activation strategies. In the last decade, much effort has been focused in the devolvement of analytical and numerical models that could explain and predict the hyperelastic behavior of different types of DE materials. Nevertheless, at present, the use of DELA is limited. The main reasons are 1) the lack of quantitative and qualitative models of the actuator as a whole system 2) the lack of a simple and reliable design methodology. In this thesis, a new point of view in the study of DELA is presented which takes into account the interaction between the DE film and the film supporting frame. Hyperelastic models of the DE film are reported which are capable of modeling the DE and the compliant electrodes. The supporting frames are analyzed and designed as compliant mechanisms using pseudo-rigid body models and subsequent finite element analysis. A new design methodology is reported which optimize the actuator performances allowing to specifically choose its inherent stiffness. As a particular case, the methodology focuses on the design of constant force actuators. This class of actuators are an example of how the force control could be highly simplified. Three new DE actuator concepts are proposed which highlight the goodness of the proposed method.
Resumo:
The thesis investigates the effect of siloxane-based water repellents on the durability of monumental stones. Laspra, a micritic limestone typical for the Spanish region of Asturias, and Repedea, an oolitic limestone from Moldavia, Romania were selected for the present study, due to their regional / national significance and level of usage. As for the siloxane-based water repellents, three worldwide used products, namely Lotexan-N, Silres® BS 290 and Tegosivin HL 100 and a newly synthesized nanocomposite material, TMSPMA, obtained starting from the 3(trimethoxysilyl)propyl methacrylate as a precursor were investigated. The limestones and the water repellents were thoroughly characterized using specific techniques. The coating of the two monumental stones with the mentioned products and the investigation of coating efficiency yielded to the conclusion that all treatments induce good water repellent properties. The treated limestones were afterwards submitted to different artificially accelerated ageing tests – resistance against UV irradiation, resistance to salt mist action and resistance to SO2 action in the presence of humidity –, the results being analyzed according to standardized evaluation methods. The durability of the treated stones was proved to depend on both stone characteristics and water repellent chemical structure. All four water repellents induced a good protection against UV irradiation, no significant differences among them being noticed. As far as the resistance to salt mist action is concerned, the product that afforded the best results when applied on Laspra was TMSPMA, and on Repedea, Silres® BS 290 or / and TMSPMA showed the highest efficiency. The best resistance to SO2 action in the presence of humidity was conferred by Tegosivin HL 100 and TMSPMA when applied on Laspra, while Silres® BS 290 and TMSPMA afforded better results in the case of Repedea.
Resumo:
The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.
Resumo:
We have realized a Data Acquisition chain for the use and characterization of APSEL4D, a 32 x 128 Monolithic Active Pixel Sensor, developed as a prototype for frontier experiments in high energy particle physics. In particular a transition board was realized for the conversion between the chip and the FPGA voltage levels and for the signal quality enhancing. A Xilinx Spartan-3 FPGA was used for real time data processing, for the chip control and the communication with a Personal Computer through a 2.0 USB port. For this purpose a firmware code, developed in VHDL language, was written. Finally a Graphical User Interface for the online system monitoring, hit display and chip control, based on windows and widgets, was realized developing a C++ code and using Qt and Qwt dedicated libraries. APSEL4D and the full acquisition chain were characterized for the first time with the electron beam of the transmission electron microscope and with 55Fe and 90Sr radioactive sources. In addition, a beam test was performed at the T9 station of the CERN PS, where hadrons of momentum of 12 GeV/c are available. The very high time resolution of APSEL4D (up to 2.5 Mfps, but used at 6 kfps) was fundamental in realizing a single electron Young experiment using nanometric double slits obtained by a FIB technique. On high statistical samples, it was possible to observe the interference and diffractions of single isolated electrons traveling inside a transmission electron microscope. For the first time, the information on the distribution of the arrival time of the single electrons has been extracted.