6 resultados para universal coding
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The thesis deals with channel coding theory applied to upper layers in the protocol stack of a communication link and it is the outcome of four year research activity. A specific aspect of this activity has been the continuous interaction between the natural curiosity related to the academic blue-sky research and the system oriented design deriving from the collaboration with European industry in the framework of European funded research projects. In this dissertation, the classical channel coding techniques, that are traditionally applied at physical layer, find their application at upper layers where the encoding units (symbols) are packets of bits and not just single bits, thus explaining why such upper layer coding techniques are usually referred to as packet layer coding. The rationale behind the adoption of packet layer techniques is in that physical layer channel coding is a suitable countermeasure to cope with small-scale fading, while it is less efficient against large-scale fading. This is mainly due to the limitation of the time diversity inherent in the necessity of adopting a physical layer interleaver of a reasonable size so as to avoid increasing the modem complexity and the latency of all services. Packet layer techniques, thanks to the longer codeword duration (each codeword is composed of several packets of bits), have an intrinsic longer protection against long fading events. Furthermore, being they are implemented at upper layer, Packet layer techniques have the indisputable advantages of simpler implementations (very close to software implementation) and of a selective applicability to different services, thus enabling a better matching with the service requirements (e.g. latency constraints). Packet coding technique improvement has been largely recognized in the recent communication standards as a viable and efficient coding solution: Digital Video Broadcasting standards, like DVB-H, DVB-SH, and DVB-RCS mobile, and 3GPP standards (MBMS) employ packet coding techniques working at layers higher than the physical one. In this framework, the aim of the research work has been the study of the state-of-the-art coding techniques working at upper layer, the performance evaluation of these techniques in realistic propagation scenario, and the design of new coding schemes for upper layer applications. After a review of the most important packet layer codes, i.e. Reed Solomon, LDPC and Fountain codes, in the thesis focus our attention on the performance evaluation of ideal codes (i.e. Maximum Distance Separable codes) working at UL. In particular, we analyze the performance of UL-FEC techniques in Land Mobile Satellite channels. We derive an analytical framework which is a useful tool for system design allowing to foresee the performance of the upper layer decoder. We also analyze a system in which upper layer and physical layer codes work together, and we derive the optimal splitting of redundancy when a frequency non-selective slowly varying fading channel is taken into account. The whole analysis is supported and validated through computer simulation. In the last part of the dissertation, we propose LDPC Convolutional Codes (LDPCCC) as possible coding scheme for future UL-FEC application. Since one of the main drawbacks related to the adoption of packet layer codes is the large decoding latency, we introduce a latency-constrained decoder for LDPCCC (called windowed erasure decoder). We analyze the performance of the state-of-the-art LDPCCC when our decoder is adopted. Finally, we propose a design rule which allows to trade-off performance and latency.
Resumo:
This thesis presents a universal model of documents and deltas. This model formalize what it means to find differences between documents and to shows a single shared formalization that can be used by any algorithm to describe the differences found between any kind of comparable documents. The main scientific contribution of this thesis is a universal delta model that can be used to represent the changes found by an algorithm. The main part of this model are the formal definition of changes (the pieces of information that records that something has changed), operations (the definitions of the kind of change that happened) and deltas (coherent summaries of what has changed between two documents). The fundamental mechanism tha makes the universal delta model a very expressive tool is the use of encapsulation relations between changes. In the universal delta model, changes are not always simple records of what has changed, they can also be combined into more complex changes that reflects the detection of more meaningful modifications. In addition to the main entities (i.e., changes, operations and deltas), the model describes and defines also documents and the concept of equivalence between documents. As a corollary to the model, there is also an extensible catalog of possible operations that algorithms can detect, used to create a common library of operations, and an UML serialization of the model, useful as a reference when implementing APIs that deal with deltas. The universal delta model presented in this thesis acts as the formal groundwork upon which algorithm can be based and libraries can be implemented. It removes the need to recreate a new delta model and terminology whenever a new algorithm is devised. It also alleviates the problems that toolmakers have when adapting their software to new diff algorithms.
Resumo:
The dynamics of a passive back-to-back test rig have been characterised, leading to a multi-coordinate approach for the analysis of arbitrary test configurations. Universal joints have been introduced into a typical pre-loaded back-to-back system in order to produce an oscillating torsional moment in a test specimen. Two different arrangements have been investigated using a frequency-based sub-structuring approach: the receptance method. A numerical model has been developed in accordance with this theory, allowing interconnection of systems with two-coordinates and closed multi-loop schemes. The model calculates the receptance functions and modal and deflected shapes of a general system. Closed form expressions of the following individual elements have been developed: a servomotor, damped continuous shaft and a universal joint. Numerical results for specific cases have been compared with published data in literature and experimental measurements undertaken in the present work. Due to the complexity of the universal joint and its oscillating dynamic effects, a more detailed analysis of this component has been developed. Two models have been presented. The first represents the joint as two inertias connected by a massless cross-piece. The second, derived by the dynamic analysis of a spherical four-link mechanism, considers the contribution of the floating element and its gyroscopic effects. An investigation into non-linear behaviour has led to a time domain model that utilises the Runge-Kutta fourth order method for resolution of the dynamic equations. It has been demonstrated that the torsional receptances of a universal joint, derived using the simple model, result in representation of the joint as an equivalent variable inertia. In order to verify the model, a test rig has been built and experimental validation undertaken. The variable inertia of a universal joint has lead to a novel application of the component as a passive device for the balancing of inertia variations in slider-crank mechanisms.
Resumo:
Many psychophysical studies suggest that target depth and direction during reaches are processed independently, but the neurophysiological support to this view is so far limited. Here, we investigated the representation of reach depth and direction by single neurons in an area of the medial posterior parietal cortex (V6A). Single-unit activity was recorded from V6A in two Macaca fascicularis monkeys performing a fixation-to-reach task to targets at different depths and directions. We found that in a substantial percentage of V6A neurons depth and direction signals jointly influenced fixation, planning and arm movement-related activity in 3D space. While target depth and direction were equally encoded during fixation, depth tuning became stronger during arm movement planning, execution and target holding. The spatial tuning of fixation activity was often maintained across epochs, and this occurred more frequently in depth. These findings support for the first time the existence of a common neural substrate for the encoding of target depth and direction during reaching movements in the posterior parietal cortex. Present results also highlight the presence in V6A of several types of cells that process independently or jointly eye position and arm movement planning and execution signals in order to control reaches in 3D space. It is possible that depth and direction influence also the metrics of the reach action and that this effect on the reach kinematic variables can account for the spatial tuning we found in V6A neural activity. For this reason, we recorded and analyzed behavioral data when one monkey performed reaching movements in 3-D space. We evaluated how the target spatial position, in particular target depth and target direction, affected the kinematic parameters and trajectories describing the motor action properties.
Resumo:
The transcribed ultraconserved regions (T-UCRs) are a group of long non-coding RNAs involved in human carcinogenesis. The factors regulating the expression of T-UCRs and their mechanism of action in human cancers are unknown. In this work it was shown that high expression of uc.339 associates with lower survival in 204 non-small cell lung cancer (NSCLC) patients. Moreover, it was shown that uc.339 found up-regulated in archival NSCLC samples, acts as a decoy RNA for miR-339-3p, -663-3p and -95-5p. So, Cyclin E2, a direct target of three microRNAs is up-regulated, inducing cancer growth and migration. Evidence of this mechanism was provided from cell lines and primary samples confirming that TP53 directly regulates uc.339. These results support a key role for uc.339 in lung cancer.