2 resultados para unclean internet data

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Internet of Things (IoT) is the next industrial revolution: we will interact naturally with real and virtual devices as a key part of our daily life. This technology shift is expected to be greater than the Web and Mobile combined. As extremely different technologies are needed to build connected devices, the Internet of Things field is a junction between electronics, telecommunications and software engineering. Internet of Things application development happens in silos, often using proprietary and closed communication protocols. There is the common belief that only if we can solve the interoperability problem we can have a real Internet of Things. After a deep analysis of the IoT protocols, we identified a set of primitives for IoT applications. We argue that each IoT protocol can be expressed in term of those primitives, thus solving the interoperability problem at the application protocol level. Moreover, the primitives are network and transport independent and make no assumption in that regard. This dissertation presents our implementation of an IoT platform: the Ponte project. Privacy issues follows the rise of the Internet of Things: it is clear that the IoT must ensure resilience to attacks, data authentication, access control and client privacy. We argue that it is not possible to solve the privacy issue without solving the interoperability problem: enforcing privacy rules implies the need to limit and filter the data delivery process. However, filtering data require knowledge of how the format and the semantics of the data: after an analysis of the possible data formats and representations for the IoT, we identify JSON-LD and the Semantic Web as the best solution for IoT applications. Then, this dissertation present our approach to increase the throughput of filtering semantic data by a factor of ten.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the era of the Internet of Everything, a user with a handheld or wearable device equipped with sensing capability has become a producer as well as a consumer of information and services. The more powerful these devices get, the more likely it is that they will generate and share content locally, leading to the presence of distributed information sources and the diminishing role of centralized servers. As of current practice, we rely on infrastructure acting as an intermediary, providing access to the data. However, infrastructure-based connectivity might not always be available or the best alternative. Moreover, it is often the case where the data and the processes acting upon them are of local scopus. Answers to a query about a nearby object, an information source, a process, an experience, an ability, etc. could be answered locally without reliance on infrastructure-based platforms. The data might have temporal validity limited to or bounded to a geographical area and/or the social context where the user is immersed in. In this envisioned scenario users could interact locally without the need for a central authority, hence, the claim of an infrastructure-less, provider-less platform. The data is owned by the users and consulted locally as opposed to the current approach of making them available globally and stay on forever. From a technical viewpoint, this network resembles a Delay/Disruption Tolerant Network where consumers and producers might be spatially and temporally decoupled exchanging information with each other in an adhoc fashion. To this end, we propose some novel data gathering and dissemination strategies for use in urban-wide environments which do not rely on strict infrastructure mediation. While preserving the general aspects of our study and without loss of generality, we focus our attention toward practical applicative scenarios which help us capture the characteristics of opportunistic communication networks.