2 resultados para two dimensional experimental
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis reports a study on the seismic response of two-dimensional squat elements and their effect on the behavior of building structures. Part A is devoted to the study of unreinforced masonry infills, while part B is focused on reinforced concrete sandwich walls. Part A begins with a comprehensive review of modelling techniques and code provisions for infilled frame structures. Then state-of-the practice techniques are applied for a real case to test the ability of actual modeling techniques to reproduce observed behaviors. The first developments towards a seismic-resistant masonry infill system are presented. Preliminary design recommendations for the seismic design of the seismic-resistant masonry infill are finally provided. Part B is focused on the seismic behavior of a specific reinforced concrete sandwich panel system. First, the results of in-plane psuudostatic cyclic tests are described. Refinements to the conventional modified compression field theory are introduced in order to better simulate the monotonic envelope of the cyclic response. The refinements deal with the constitutive model for the shotcrete in tension and the embedded bars. Then the hysteretic response of the panels is studied according to a continuum damage model. Damage state limits are identified. Design recommendations for the seismic design of the studied reinforced concrete sandwich walls are finally provided.
Resumo:
This thesis, after presenting recent advances obtained for the two-dimensional bin packing problem, focuses on the case where guillotine restrictions are imposed. A mathematical characterization of non-guillotine patterns is provided and the relation between the solution value of the two-dimensional problem with guillotine restrictions and the two-dimensional problem unrestricted is being studied from a worst-case perspective. Finally it presents a new heuristic algorithm, for the two-dimensional problem with guillotine restrictions, based on partial enumeration, and computationally evaluates its performance on a large set of instances from the literature. Computational experiments show that the algorithm is able to produce proven optimal solutions for a large number of problems, and gives a tight approximation of the optimum in the remaining cases.