3 resultados para tunica vaginalis
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Recently, the existence of a capillary-rich vasculogenic zone has been identified in adult human arteries between the tunica media and adventitia; in this area it has been postulated that Mesenchymal Stem Cells (MSCs) may be present amidst the endothelial progenitors and hematopoietic stem cells. This hypothesis is supported by several studies claiming to have found the in vivo reservoir of MSCs in post-natal vessels and by the presence of ectopic tissues in the pathological artery wall. We demonstrated that the existence of multipotent progenitors is not restricted to microvasculature; vascular wall resident MSCs (VW-MSCs) have been isolated from multidistrict human large and middle size vessels (aortic arch, thoracic aorta and femoral artery) harvested from healthy multiorgan donors. Each VW-MSC population shows characteristics of embryonic-like stem cells and exhibits angiogenic, adipogenic, chondrogenic and leiomyogenic potential but less propensity to osteogenic ifferentiation. Human vascular progenitor cells are also able to engraft, differentiate into mature endothelial cells and support muscle function when injected in a murine model of hind limb ischemia. Conversely, VW-MSCs isolated from calcified femoral arteries display a good response to osteogenic commitment letting us to suppose that VW-MSCs could have an important role in the onset of vascular pathologies such as Mönckeberg sclerosis. Taken together these results show two opposite roles of vascular progenitor cells and underline the importance of establishing their in vivo pathological and regenerative potential to better understand pathological events and promote different therapeutic strategies in cardiovascular research and clinical applications.
Resumo:
The vaginal microbiota of healthy women consists of a wide variety of anaerobic and aerobic bacteria, dominated by the genus Lactobacillus. The activity of lactobacilli is essential to protect women from genital infections and to maintain the natural healthy balance of the vaginal ecosystem. This role is particularly important during pregnancy because vaginal infection is one of the most important mechanisms for preterm birth. The most common vaginal disorder is bacterial vaginosis (BV). BV is a polymicrobial disorder, characterized by a depletion of lactobacilli and an increase in the concentration of other bacteria, including Gardnerella vaginalis, anaerobic Gram-negative rods, anaerobic Gram-positive cocci, Mycoplasma hominis, and Mobiluncus spp. An integrated molecular approach based on real-time PCR and PCR-DGGE was used to investigate the effects of two different therapeutic approaches on the vaginal microbiota composition. (i) The impact of a dietary supplementation with the probiotic VSL#3, a mixture of Lactobacillus, Bifidobacterium and Streptococcus strains, on the vaginal microbial ecology and immunological profiles of healthy women during late pregnancy was investigated. The intake was associated to a slight modulation of the vaginal microbiota and cytokine secretion, with potential implications in preventing preterm birth. (ii) The efficacy of different doses of the antibiotic rifaximin (100 mg/day for 5 days, 25 mg/day for 5 days, 100 mg/day for 2 days) on the vaginal microbiota of patients with BV enrolled in a multicentre, double-blind, randomised, placebo-controlled study was also evaluated. The molecular analyses demonstrated the ability of rifaximin 25 mg/day for 5 days to induce an increase of lactobacilli and a decrease of the BV-associated bacteria after antibiotic treatment, and a reduction of the complexity of the vaginal microbial communities. Thus, confirming clinical results, it represents the most effective treatment to be used in future pivotal studies for the treatment of BV.
Resumo:
The present thesis aims to provide a thorough comprehension of the vaginal ecosystem of pregnant women and enhance the knowledge of pregnancy pathophysiology. The first study emphasized the importance of limiting protein intake from animal sources, consuming carbohydrates, and avoiding starting pregnancy overweight to maintain a healthy vaginal environment characterized by lactobacilli and related metabolites. In the second paper, a reduction in bacterial diversity, an increase in Lactobacillus abundance, and a decrease in bacterial vaginosis-related genera were observed during pregnancy. Lactobacillus abundance correlated with higher levels of lactate, sarcosine, and amino acids, while bacterial vaginosis-related genera were associated with amines, formate, acetate, alcohols, and short-chain fatty acids. An association between intrapartum antibiotic prophylaxis for Group B Streptococcus and higher vaginal abundance of Prevotella was found. Moreover, women experiencing a first-trimester miscarriage displayed a higher abundance of Fusobacterium. The third study explored the presence of macrolides and tetracyclines resistance genes in the vaginal environment, highlighting that different vaginal microbiota types were associated with distinct resistance profiles. Lactobacilli-dominated ecosystems showed fewer or no resistance genes, while women with increased bacterial vaginosis-related genera were positive for resistance genes. The last two papers aimed to identify potential biomarkers of vaginal health or disease status. The fourth paper showed that positivity for Torquetenovirus decreased from the first to the third trimester, being more prevalent in women with higher vaginal leukocyte counts. Torquetenovirus-positive samples showed higher levels of cytokines, propionate, and cadaverine. Lactobacillus species decreased in Torquetenovirus-positive samples, while Sneathia and Shuttleworthia increased. The last work pointed out the association between clade 2 of Gardnerella vaginalis and bacterial vaginosis. Moreover, as the number of simultaneously detected G. vaginalis clades increased, bacterial vaginosis-associated bacteria also tended to increase. Additionally, sialidase gene levels negatively correlated with Lactobacillus and positively correlated with Gardnerella, Atopobium, Prevotella, Megasphaera, and Sneathia.