7 resultados para traffic simulation models
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In una situazione caratterizzata dalla scarsità delle risorse finanziare a disposizione degli enti locali, che rende necessario il contributo dei privati alla realizzazione delle opere pubbliche, e dalla scarsità delle risorse ambientali, che impone di perseguire la sostenibilità degli interventi, la tesi si pone l’obiettivo di rendere le realizzazioni di nuove infrastrutture viarie “attive” rispetto al contesto in cui si collocano, garantendo l’impegno di tutte parti coinvolte. Si tratta di ottenere il contributo dei privati oltre che per le opere di urbanizzazione primaria, funzionali all’insediamento stesso, anche per la realizzazione di infrastrutture viarie non esclusivamente dedicate a questo, ma che sono necessarie per garantirne la sostenibilità. Tale principio, che viene anche denominato “contributo di sostenibilità”, comincia oggi a trovare un’applicazione nelle pratiche urbanistiche, sconta ancora alcune criticità, in quanto i casi sviluppati si basano spesso su considerazioni che si prestano a contenziosi tra operatori privati e pubblica amministrazione. Ponendosi come obiettivo la definizione di una metodologia di supporto alla negoziazione per la determinazione univoca e oggettiva del contributo da chiedere agli attuatori delle trasformazioni per la realizzazione di nuove infrastrutture viarie, ci si è concentrati sullo sviluppo di un metodo operativo basato sull’adozione dei modelli di simulazione del traffico a 4 stadi. La metodologia proposta è stata verificata attraverso l’applicazione ad un caso di studio, che riguarda la realizzazione di un nuovo asse viario al confine tra i comuni di Castel Maggiore ed Argelato. L’asse, indispensabile per garantire l’accessibilità alle nuove aree di trasformazione che interessano quel quadrante, permette anche di risolvere alcune criticità viabilistiche attualmente presenti. Il tema affrontato quindi è quello della determinazione del contributo che ciascuno degli utilizzatori del nuovo asse dovrà versare al fine di consentirne la realizzazione. In conclusione, si formulano alcune considerazioni sull’utilità della metodologia proposta e sulla sua applicabilità a casi analoghi.
Resumo:
Urbanization is a continuing phenomenon in all the world. Grasslands, forests, etc. are being continually changed to residential, commercial and industrial complexes, roads and streets, and so on. One of the side effects of urbanization with which engineers and planners must deal with, is the increase of peak flows and volumes of runoff from rainfall events. As a result, the urban drainage and flood control systems must be designed to accommodate the peak flows from a variety of storms that may occur. Usually the peak flow, after development, is required not to exceed what would have occurred from the same storm under conditions existing prior to development. In order to do this it is necessary to design detention storage to hold back runoff and to release it downstream at controlled rates. In the first part of the work have been developed various simplified formulations that can be adopted for the design of stormwater detention facilities. In order to obtain a simplified hydrograph were adopted two approaches: the kinematic routing technique and the linear reservoir schematization. For the two approaches have been also obtained other two formulations depending if the IDF (intensity-duration-frequency) curve is described with two or three parameters. Other formulations have been developed taking into account if the outlet have a constant discharge or it depends on the water level in the pond. All these formulations can be easily applied when are known the characteristics of the drainage system and maximum discharge that these is in the outlet and has been defined a Return Period which characterize the IDF curve. In this way the volume of the detention pond can be calculated. In the second part of the work have been analyzed the design of detention ponds adopting continuous simulation models. The drainage systems adopted for the simulations, performed with SWMM5, are fictitious systems characterized by different sizes, and different shapes of the catchments and with a rainfall historical time series of 16 years recorded in Bologna. This approach suffers from the fact that continuous record of rainfall is often not available and when it is, the cost of such modelling can be very expensive, and that the majority of design practitioners are not prepared to use continuous long term modelling in the design of stormwater detention facilities. In the third part of the work have been analyzed statistical and stochastic methodologies in order to define the volume of the detention pond. In particular have been adopted the results of the long term simulation, performed with SWMM, to obtain the data to apply statistic and stochastic formulation. All these methodologies have been compared and correction coefficient have been proposed on the basis of the statistic and stochastic form. In this way engineers which have to design a detention pond can apply a simplified procedure appropriately corrected with the proposed coefficient.
Resumo:
Today the design of hydraulic and lubrication circuits is becoming more and more important. The aim of this study is to develop a methodology for the design of the lubrication circuit of an agricultural tractor. In this paper the lubrication circuit of a continuously variable transmission is analysed. Several lines of the circuit are considered and in particular the lubrication of gears is discussed. The worst possible working condition which corresponds to the highest power dissipation for each part of the transmission is determined. The model of the lubrication circuit is developed with two different software simulations (Automation Studio & Amesim). In order to check the reliability of the simulation models and to characterise the lubrication circuit, experimental tests are performed. The comparison between the values of pressure drops obtained by the models and by the experimental test, demonstrates that it is possible to use these programs for the set up of a simple model of the lubrication circuit. The calculation of oil flows necessary for a force-fed lubrication of the gears, the simulation of the circuit by commercial software, and the validation of the circuit design allow to set up a preliminary equilibrium among the pipes and a proper flow rate distribution. Optimising the circuit design in the initial phase of the project is very important. The experimental adjustment of the circuit, which is often difficult, can be simplified; time and cost production can be reduced.
Resumo:
Herbicides are becoming emergent contaminants in Italian surface, coastal and ground waters, due to their intensive use in agriculture. In marine environments herbicides have adverse effects on non-target organisms, as primary producers, resulting in oxygen depletion and decreased primary productivity. Alterations of species composition in algal communities can also occur due to the different sensitivity among the species. In the present thesis the effects of herbicides, widely used in the Northern Adriatic Sea, on different algal species were studied. The main goal of this work was to study the influence of temperature on algal growth in the presence of the triazinic herbicide terbuthylazine (TBA), and the cellular responses adopted to counteract the toxic effects of the pollutant (Chapter 1 and 2). The development of simulation models to be applied in environmental management are needed to organize and track information in a way that would not be possible otherwise and simulate an ecological prospective. The data collected from laboratory experiments were used to simulate algal responses to the TBA exposure at increasing temperature conditions (Chapter 3). Part of the thesis was conducted in foreign countries. The work presented in Chapter 4 was focused on the effect of high light on growth, toxicity and mixotrophy of the ichtyotoxic species Prymnesium parvum. In addition, a mesocosm experiment was conducted in order to study the synergic effect of the pollutant emamectin benzoate with other anthropogenic stressors, such as oil pollution and induced phytoplankton blooms (Chapter 5).
Resumo:
Population growth in urban areas is a world-wide phenomenon. According to a recent United Nations report, over half of the world now lives in cities. Numerous health and environmental issues arise from this unprecedented urbanization. Recent studies have demonstrated the effectiveness of urban green spaces and the role they play in improving both the aesthetics and the quality of life of its residents. In particular, urban green spaces provide ecosystem services such as: urban air quality improvement by removing pollutants that can cause serious health problems, carbon storage, carbon sequestration and climate regulation through shading and evapotranspiration. Furthermore, epidemiological studies with controlled age, sex, marital and socio-economic status, have provided evidence of a positive relationship between green space and the life expectancy of senior citizens. However, there is little information on the role of public green spaces in mid-sized cities in northern Italy. To address this need, a study was conducted to assess the ecosystem services of urban green spaces in the city of Bolzano, South Tyrol, Italy. In particular, we quantified the cooling effect of urban trees and the hourly amount of pollution removed by the urban forest. The information was gathered using field data collected through local hourly air pollution readings, tree inventory and simulation models. During the study we quantified pollution removal for ozone, nitrogen dioxide, carbon monoxide and particulate matter (<10 microns). We estimated the above ground carbon stored and annually sequestered by the urban forest. Results have been compared to transportation CO2 emissions to determine the CO2 offset potential of urban streetscapes. Furthermore, we assessed commonly used methods for estimating carbon stored and sequestered by urban trees in the city of Bolzano. We also quantified ecosystem disservices such as hourly urban forest volatile organic compound emissions.
Resumo:
To continuously improve the performance of metal-oxide-semiconductor field-effect-transistors (MOSFETs), innovative device architectures, gate stack engineering and mobility enhancement techniques are under investigation. In this framework, new physics-based models for Technology Computer-Aided-Design (TCAD) simulation tools are needed to accurately predict the performance of upcoming nanoscale devices and to provide guidelines for their optimization. In this thesis, advanced physically-based mobility models for ultrathin body (UTB) devices with either planar or vertical architectures such as single-gate silicon-on-insulator (SOI) field-effect transistors (FETs), double-gate FETs, FinFETs and silicon nanowire FETs, integrating strain technology and high-κ gate stacks are presented. The effective mobility of the two-dimensional electron/hole gas in a UTB FETs channel is calculated taking into account its tensorial nature and the quantization effects. All the scattering events relevant for thin silicon films and for high-κ dielectrics and metal gates have been addressed and modeled for UTB FETs on differently oriented substrates. The effects of mechanical stress on (100) and (110) silicon band structures have been modeled for a generic stress configuration. Performance will also derive from heterogeneity, coming from the increasing diversity of functions integrated on complementary metal-oxide-semiconductor (CMOS) platforms. For example, new architectural concepts are of interest not only to extend the FET scaling process, but also to develop innovative sensor applications. Benefiting from properties like large surface-to-volume ratio and extreme sensitivity to surface modifications, silicon-nanowire-based sensors are gaining special attention in research. In this thesis, a comprehensive analysis of the physical effects playing a role in the detection of gas molecules is carried out by TCAD simulations combined with interface characterization techniques. The complex interaction of charge transport in silicon nanowires of different dimensions with interface trap states and remote charges is addressed to correctly reproduce experimental results of recently fabricated gas nanosensors.