11 resultados para traction and oscillatory processes
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The question of how we make, and how we should make judgments and decisions has occupied thinkers for many centuries. This thesis has the aim to add new evidences to clarify the brain’s mechanisms for decisions. The cognitive and the emotional processes of social actions and decisions are investigated with the aim to understand which brain areas are mostly involved. Four experimental studies are presented. A specific kind of population is involved in the first study (as well as in study III) concerning patients with lesion of ventromedial prefrontal cortex (vmPFC). This region is collocated in the ventral surface of frontal lobe, and it seems have an important role in social and moral decision in forecasting the negative emotional consequences of choice. In study I, it is examined whether emotions, specifically social emotions subserved by the vmPFC, affect people’s willingness to trust others. In study II is observed how incidental emotions could encourage trusting behaviour, especially when individuals are not aware of emotive stimulation. Study III has the aim to gather a direct psychophysiological evidence, both in healthy and neurologically impaired individuals, that emotions are crucially involved in shaping moral judgment, by preventing moral violations. Study IV explores how the moral meaning of a decision and its subsequent action can modulate the basic component of action such as sense of agency.
Resumo:
Several coralligenous reefs occur in the soft bottoms of the northern Adriatic continental shelf. Mediterranean coralligenous habitats are characterised by high species diversity and are intrinsically valuable for their biological diversity and for the ecological processes they support. The conservation and management of these habitats require quantifying spatial and temporal variability of their benthic assemblages. This PhD thesis aims to give a relevant contribution to the knowledge of the structure and dynamics of the epibenthic assemblages on the coralligenous subtidal reefs occurring in the northern Adriatic Sea. The epibenthic assemblages showed a spatial variation larger compared to temporal changes, with a temporal persistence of reef-forming organisms. Assemblages spatial heterogeneity has been related to morphological features and geographical location of the reefs, together with variation in the hydrological conditions. Manipulative experiments help to understand the ecological processes structuring the benthic assemblages and maintaining their diversity. In this regards a short and long term experiment on colonization patterns of artificial substrata over a 3-year period has been performed in three reefs, corresponding to the three main types of assemblages detected in the previous study. The first colonisers, largely depending by the different larval supply, played a key role in determining the heterogeneity of the assemblages in the early stage of colonisation. Lateral invasion, from the surrounding assemblages, was the driver in structuring the mature assemblages. These complex colonisation dynamics explained the high heterogeneity of the assemblages dwelling on the northern Adriatic biogenic reefs. The buildup of these coralligenous reefs mainly depends by the bioconstruction-erosion processes that has been analysed through a field experiment. Bioconstruction, largely due to serpulid polychaetes, prevailed on erosion processes and occurred at similar rates in all sites. Similarly, the total energy contents in the benthic communities do not differ among sites, despite being provided by different species. Therefore, we can hypothesise that both bioconstruction processes and energetic storage may be limited by the availability of resources. Finally the major contribution of the zoobenthos compared to the phytobenthos to the total energetic content of assemblages suggests that the energy flow in these benthic habitats is primarily supported by planktonic food web trough the filter feeding invertebrates.
Resumo:
The relationship between emotion and cognition is a topic that raises great interest in research. Recently, a view of these two processes as interactive and mutually influencing each other has become predominant. This dissertation investigates the reciprocal influences of emotion and cognition, both at behavioral and neural level, in two specific fields, such as attention and decision-making. Experimental evidence on how emotional responses may affect perceptual and attentional processes has been reported. In addition, the impact of three factors, such as personality traits, motivational needs and social context, in modulating the influence that emotion exerts on perception and attention has been investigated. Moreover, the influence of cognition on emotional responses in decision-making has been demonstrated. The current experimental evidence showed that cognitive brain regions such as the dorsolateral prefrontal cortex are causally implicated in regulation of emotional responses and that this has an effect at both pre and post decisional stages. There are two main conclusions of this dissertation: firstly, emotion exerts a strong influence on perceptual and attentional processes but, at the same time, this influence may also be modulated by other factors internal and external to the individuals. Secondly, cognitive processes may modulate emotional prepotent responses, by serving a regulative function critical to driving and shaping human behavior in line with current goals.
Resumo:
This work presents a comprehensive methodology for the reduction of analytical or numerical stochastic models characterized by uncertain input parameters or boundary conditions. The technique, based on the Polynomial Chaos Expansion (PCE) theory, represents a versatile solution to solve direct or inverse problems related to propagation of uncertainty. The potentiality of the methodology is assessed investigating different applicative contexts related to groundwater flow and transport scenarios, such as global sensitivity analysis, risk analysis and model calibration. This is achieved by implementing a numerical code, developed in the MATLAB environment, presented here in its main features and tested with literature examples. The procedure has been conceived under flexibility and efficiency criteria in order to ensure its adaptability to different fields of engineering; it has been applied to different case studies related to flow and transport in porous media. Each application is associated with innovative elements such as (i) new analytical formulations describing motion and displacement of non-Newtonian fluids in porous media, (ii) application of global sensitivity analysis to a high-complexity numerical model inspired by a real case of risk of radionuclide migration in the subsurface environment, and (iii) development of a novel sensitivity-based strategy for parameter calibration and experiment design in laboratory scale tracer transport.
Resumo:
This is a multidisciplinary study of the Brown Tuffs (BT) ash deposits of the Aeolian Islands in northern Sicily and representing the most voluminous and widely distributed tephra deposit in this region. A large dataset of major and minor elements of the BT glass has defined a range from K-series basaltic-andesites and trachy-andesites through to tephri-phonolites and trachytes that is consistent with the Vulcano magmatic system. Combined with stratigraphic information and new radiocarbon ages, four stratigraphic macro-units are defined: the Lower (80-56 ky; LBT), Intermediate (56-27 ky; IBT), Intermediate-upper (26-24 ky; IBT-upper) and Upper BT (24-6 ky; UBT). Glass compositional data provide constraints on proximal-distal correlations of the BT with deep-sea tephra layers in the Tyrrhenian and Adriatic Seas and new insights on the definition of the dispersal area of the BT eruptions. Sedimentological evidence of massive to stratified deposits and shear-related structures, coupled with grain-size and componentry analyses, have allowed to interpret the BT as the result of laterally-spreading, concentrated ash-rich PDCs, with a high potential of erosion of the substratum. Shear-structures similar to those observed in the field in the BT deposits have been reproduced by small-medium scale laboratory experiments carried out on ash granular flows, which have also allowed to describe the behaviour of ash-rich PDcs and their mobility depending on variations of slope-ratio, grain size and flow channelization. The resulting integrated dataset provides a contribution to the knowledge of the BT eruptions and insights on long-term hazard assessment in the study area. The eruptive dynamics of the BT may have a role in characterizing the whole magmatic system of the La Fossa Caldera on Vulcano, in the light of the geochemical link highlighted between the UBT macrounit and the early products of the La Fossa cone.
Resumo:
The urgent need for alternative solutions mitigating the impacts of human activities on the environment has strongly opened new challenges and opportunities in view of the energy transition. Indeed, the automotive industry is going through a revolutionary moment in its quest to reduce its carbon footprint, with biofuels being one of the viable alternatives. The use of different classes of biofuels as fuel additives/standalone components has attracted the attention of many researchers. Despite their beneficial effects, biofuel’s combustion can also result in the production of undesirable pollutants, requiring complete characterization of the phenomena occurring during their production and consumption. Industrial scale-up of biomass conversion is challenging owing to the complexity of its chemistry and transport phenomena involved in the process. In this view, the role of solid-phase and gas-phase chemistry is paramount. Thus, this study is devoted to detailed analysis of physical-chemical phenomena characterizing biomass pyrolysis and biofuel oxidation. The pyrolysis mechanism has been represented by 20 reactions whereas, the gas-phase kinetic models; manually upgraded model (KiBo_MU) and automated model (KiBo_AG), comprises 141 species and 453 reactions, and 631 species and 28329 reactions, respectively. The accuracy of the kinetic models was tested against experimental data and the models captured experimental trends very well. While the development and validation of detailed kinetic mechanisms is the main deliverable of this project, the realized procedure integrating schematic classifications with methodologies for the identification of common decomposition pathways and intermediates represents an additional source of novelty. Besides, the fundamentally oriented nature of the adopted method allows the identification of most relevant reactions and species under the operating conditions different industrial applications, paving the way for reduced kinetic mechanisms. Ultimately, the resulting detailed mechanisms can be used to integrate with more complex fluid dynamics model to accurately reproduce the behavior of real systems and reactors.
Resumo:
Since the turn of the century, fisheries have maintained a steady growth rate, while aquaculture has experienced a more rapid expansion. Aquaculture can offer EU consumers more diverse, healthy, and sustainable food options, some of which are more popular elsewhere. To develop the sector, the EU is investing heavily. The EU supports innovative projects that promote the sustainable development of seafood sectors and food security. Priority 3 promotes sector development through innovation dissemination. This doctoral dissertation examined innovation transfer in the Italian aquaculture sector, specifically the adoption of innovative tools, using a theoretical model to better understand the complexity of these processes. The work focused on innovation adoption, emphasising that it is the end of a well-defined process. The Awareness Knowledge Adoption Implementation Effectiveness (AKAIE) model was created to better analyse post-adoption phases and evaluate technology adoption implementation and impact. To identify AKAIE drivers and barriers, aquaculture actors were consulted. "Perceived complexity"—barriers to adoption that are strongly influenced by contextual factors—has been used to examine their perspectives (i.e. socio-economic, institutional, cultural ones). The new model will contextualise the sequence based on technologies, entrepreneur traits, corporate and institutional contexts, and complexity perception, the sequence's central node. Technology adoption can also be studied by examining complexity perceptions along the AKAIE sequence. This study proposes a new model to evaluate the diffusion of a given technology, offering the policy maker the possibility to be able to act promptly across the process. The development of responsible policies for evaluating the effectiveness of innovation is more necessary than ever, especially to orient strategies and interventions in the face of major scenarios of change.
Resumo:
This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.
Resumo:
The aim of this thesis is to study how explosive behavior and geophysical signals in a volcanic conduit are related to the development of overpressure in slug-driven eruptions. A first suite of laboratory experiments of gas slugs ascending in analogue conduits was performed. Slugs ascended into a range of analogue liquids and conduit diameters to allow proper scaling to the natural volcanoes. The geometrical variation of the slug in response to the explored variables was parameterised. Volume of gas slug and rheology of the liquid phase revealed the key parameters in controlling slug overpressure at bursting. Founded on these results, a theoretical model to calculate burst overpressure for slug-driven eruptions was developed. The dimensionless approach adopted allowed to apply the model to predict bursting pressure of slugs at Stromboli. Comparison of predicted values with measured data from Stromboli volcano showed that the model can explain the entire spectrum of observed eruptive styles at Stromboli – from low-energy puffing, through normal Strombolian eruptions, up to paroxysmal explosions – as manifestations of a single underlying physical process. Finally, another suite of laboratory experiments was performed to observe oscillatory pressure and forces variations generated during the expansion and bursting of gas slugs ascending in a conduit. Two end-member boundary conditions were imposed at the base of the pipe, simulating slug ascent in closed base (zero magma flux) and open base (constant flux) conduit. At the top of the pipe, a range of boundary conditions that are relevant at a volcanic vent were imposed, going from open to plugged vent. The results obtained illustrate that a change in boundary conditions in the conduit concur to affect the dynamic of slug expansion and burst: an upward flux at the base of the conduit attenuates the magnitude of the pressure transients, while a rheological stiffening in the top-most region of conduit changes dramatically the magnitude of the observed pressure transients, favoring a sudden, and more energetic pressure release into the overlying atmosphere. Finally, a discussion on the implication of changing boundary on the oscillatory processes generated at the volcanic scale is also given.
Resumo:
The research activities described in the present thesis have been oriented to the design and development of components and technological processes aimed at optimizing the performance of plasma sources in advanced in material treatments. Consumables components for high definition plasma arc cutting (PAC) torches were studied and developed. Experimental activities have in particular focussed on the modifications of the emissive insert with respect to the standard electrode configuration, which comprises a press fit hafnium insert in a copper body holder, to improve its durability. Based on a deep analysis of both the scientific and patent literature, different solutions were proposed and tested. First, the behaviour of Hf cathodes when operating at high current levels (250A) in oxidizing atmosphere has been experimentally investigated optimizing, with respect to expected service life, the initial shape of the electrode emissive surface. Moreover, the microstructural modifications of the Hf insert in PAC electrodes were experimentally investigated during first cycles, in order to understand those phenomena occurring on and under the Hf emissive surface and involved in the electrode erosion process. Thereafter, the research activity focussed on producing, characterizing and testing prototypes of composite inserts, combining powders of a high thermal conductibility (Cu, Ag) and high thermionic emissivity (Hf, Zr) materials The complexity of the thermal plasma torch environment required and integrated approach also involving physical modelling. Accordingly, a detailed line-by-line method was developed to compute the net emission coefficient of Ar plasmas at temperatures ranging from 3000 K to 25000 K and pressure ranging from 50 kPa to 200 kPa, for optically thin and partially autoabsorbed plasmas. Finally, prototypal electrodes were studied and realized for a newly developed plasma source, based on the plasma needle concept and devoted to the generation of atmospheric pressure non-thermal plasmas for biomedical applications.
Resumo:
The functionalization of substrates through the application of nanostructured coatings allows to create new materials, with enhanced properties. In this work, the development of self-cleaning and antibacterial textiles, through the application of TiO2 and Ag based nanostructured coatings was carried out. The production of TiO2 and Ag functionalized materials was achieved both by the classical dip-padding-curing method and by the innovative electrospinning process to obtain nanofibers doped with nano-TiO2 and nano-Ag. In order to optimize the production of functionalized textiles, the study focused on the comprehension of mechanisms involved in the photocatalytic and antibacterial processes and on the real applicability of the products. In particular, a deep investigation on the relationship between nanosol physicochemical characteristics, nanocoating properties and their performances was accomplished. Self-cleaning textiles with optimized properties were obtained by properly purifying and applying commercial TiO2 nanosol while the studies on the photocatalytic mechanism operating in self-cleaning application demonstrated the strong influence of hydrophilic properties and of interaction surface/radicals on final performance. Moreover, a study about the safety in handling of nano-TiO2 was carried out and risk remediation strategies, based on “safety by design” approach, were developed. In particular, the coating of TiO2 nanoparticles by a SiO2 shell was demonstrated to be the best risk remediation strategy in term of biological response and preserving of photoreactivity. The obtained results were confirmed determining the reactive oxygen species production by a multiple approach. Antibacterial textiles for biotechnological applications were also studied and Ag-coated cotton materials, with significant anti-bacterial properties, were produced. Finally, composite nanofibers were obtained merging biopolymer processing and sol-gel techniques. Indeed, electrospun nanofibers embedded with TiO2 and Ag NPs, starting from aqueous keratin based formulation were produced and the photocatalytic and antibacterial properties were assessed. The results confirmed the capability of electrospun keratin nanofibers matrix to preserve nanoparticle properties.