2 resultados para theory of the dependence of resource

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this Ph.D. dissertation is the study of clustering dependent data by means of copula functions with particular emphasis on microarray data. Copula functions are a popular multivariate modeling tool in each field where the multivariate dependence is of great interest and their use in clustering has not been still investigated. The first part of this work contains the review of the literature of clustering methods, copula functions and microarray experiments. The attention focuses on the K–means (Hartigan, 1975; Hartigan and Wong, 1979), the hierarchical (Everitt, 1974) and the model–based (Fraley and Raftery, 1998, 1999, 2000, 2007) clustering techniques because their performance is compared. Then, the probabilistic interpretation of the Sklar’s theorem (Sklar’s, 1959), the estimation methods for copulas like the Inference for Margins (Joe and Xu, 1996) and the Archimedean and Elliptical copula families are presented. In the end, applications of clustering methods and copulas to the genetic and microarray experiments are highlighted. The second part contains the original contribution proposed. A simulation study is performed in order to evaluate the performance of the K–means and the hierarchical bottom–up clustering methods in identifying clusters according to the dependence structure of the data generating process. Different simulations are performed by varying different conditions (e.g., the kind of margins (distinct, overlapping and nested) and the value of the dependence parameter ) and the results are evaluated by means of different measures of performance. In light of the simulation results and of the limits of the two investigated clustering methods, a new clustering algorithm based on copula functions (‘CoClust’ in brief) is proposed. The basic idea, the iterative procedure of the CoClust and the description of the written R functions with their output are given. The CoClust algorithm is tested on simulated data (by varying the number of clusters, the copula models, the dependence parameter value and the degree of overlap of margins) and is compared with the performance of model–based clustering by using different measures of performance, like the percentage of well–identified number of clusters and the not rejection percentage of H0 on . It is shown that the CoClust algorithm allows to overcome all observed limits of the other investigated clustering techniques and is able to identify clusters according to the dependence structure of the data independently of the degree of overlap of margins and the strength of the dependence. The CoClust uses a criterion based on the maximized log–likelihood function of the copula and can virtually account for any possible dependence relationship between observations. Many peculiar characteristics are shown for the CoClust, e.g. its capability of identifying the true number of clusters and the fact that it does not require a starting classification. Finally, the CoClust algorithm is applied to the real microarray data of Hedenfalk et al. (2001) both to the gene expressions observed in three different cancer samples and to the columns (tumor samples) of the whole data matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation mimics the Turkish college admission procedure. It started with the purpose to reduce the inefficiencies in Turkish market. For this purpose, we propose a mechanism under a new market structure; as we prefer to call, semi-centralization. In chapter 1, we give a brief summary of Matching Theory. We present the first examples in Matching history with the most general papers and mechanisms. In chapter 2, we propose our mechanism. In real life application, that is in Turkish university placements, the mechanism reduces the inefficiencies of the current system. The success of the mechanism depends on the preference profile. It is easy to show that under complete information the mechanism implements the full set of stable matchings for a given profile. In chapter 3, we refine our basic mechanism. The modification on the mechanism has a crucial effect on the results. The new mechanism is, as we call, a middle mechanism. In one of the subdomain, this mechanism coincides with the original basic mechanism. But, in the other partition, it gives the same results with Gale and Shapley's algorithm. In chapter 4, we apply our basic mechanism to well known Roommate Problem. Since the roommate problem is in one-sided game patern, firstly we propose an auxiliary function to convert the game semi centralized two-sided game, because our basic mechanism is designed for this framework. We show that this process is succesful in finding a stable matching in the existence of stability. We also show that our mechanism easily and simply tells us if a profile lacks of stability by using purified orderings. Finally, we show a method to find all the stable matching in the existence of multi stability. The method is simply to run the mechanism for all of the top agents in the social preference.