3 resultados para temperature change

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Mediterranean Sea is expected to react faster to global change compared to the ocean and is already showing more pronounced warming and acidification rates. A study performed along the Italian western coast showed that porosity of the skeleton increases with temperature in the zooxanthellate (i.e. symbiotic with unicellular algae named zooxanthellae) solitary scleractinian Balanophyllia europaea while it does not vary with temperature in the solitary non-zooxanthellate Leptopsammia pruvoti. These results were confirmed by another study that indicated that the increase in porosity was accompanied by an increase of the fraction of the largest pores in the pore-space, perhaps due to an inhibition of the photosynthetic process at elevated temperatures, causing an attenuation of calcification. B. europaea, L. pruvoti and the colonial non-zooxanthellate Astroides calycularis, transplanted along a natural pH gradient, showed that high temperature exacerbated the negative effect of lowered pH on their mortality rates. The growth of the zooxanthellate species did not react to reduced pH, while the growth of the two non-zooxanthellate species was negatively affected. Reduced abundance of naturally occurring B. europaea, a mollusk, a calcifying and a non-calcifying macroalgae were observed along the gradient while no variation was seen in the abundance of a calcifying green alga. With decreasing pH, the mineralogy of the coral and mollusk did not change, while the two calcifying algae decreased the content of aragonite in favor of the less soluble calcium sulphates and whewellite (calcium oxalate), possibly as a mechanism of phenotypic plasticity. Increased values of porosity and macroporosity with CO2 were observed in B. europaea specimens, indicating reduces the resistance of its skeletons to mechanical stresses with increasing acidity. These findings, added to the negative effect of temperature on various biological parameters, generate concern on the sensitivity of this zooxanthellate species to the envisaged global climate change scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Thesis, we analyze how climate risk impacts economic players and its consequences on the financial markets. Essentially, literature unravels two main channels through which climate change poses risks to the status quo, namely physical and transitional risk, that we cover in three works. Firstly, the call for a global shift to a net-zero economy implicitly devalues assets that contribute to global warming that regulators are forcing to dismiss. On the other hand, abnormal changes in the temperatures as well as weather-related events challenge the environmental equilibrium and could directly affect operations as well as profitability. We start the analysis with the physical component, by presenting a statistical measure that generally represents shocks to the distribution of temperature anomalies. We oppose this statistic to classical physical measures and assess that it is the driver of the electricity consumption, in the weather derivatives market, and in the cross-section of equity returns. We find two transmission channels, namely investor attention, and firm operations. We then analyze the transition risk component, by associating a regulatory horizon characterization to fixed income valuation. We disentangle a risk driver for corporate bond overperformance that is tight to change in credit riskiness. After controlling a statistical learning algorithm to forecast excess returns, we include carbon emission metrics without clear evidence. Finally, we analyze the effects of change in carbon emission on a regulated market such as the EU ETS by selecting utility sector corporate bond and, after controlling for the possible risk factor, we document how a firm’s carbon profile differently affects the term structure of credit riskiness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global warming and climate change have been among the most controversial topics after the industrial revolution. The main contributor to global warming is carbon dioxide (CO2), which increases the temperature by trapping heat in the atmosphere. Atmospheric CO2 concentration before the industrial era was around 280 ppm for a long period, while it has increased dramatically since the industrial revolution up to approximately 420 ppm. According to the Paris agreement it is needed to keep the temperature increase up to 2°C, preferably 1.5° C, to prevent reaching the tipping point of climate change. To keep the temperature increase below the range, it is required to find solutions to reduce CO2 emissions. The solutions can be low-carbon systems and transition from fossil fuels to renewable energy sources (RES). This thesis is allocated to the assessment of low-carbon systems and the reduction of CO2 by using RES instead of fossil fuels. One of the most important aspects to define the location and capacity of low-carbon systems is CO2 mass estimation. As mentioned, high-emission systems can be substituted by low-carbon systems. An example of high-emission systems is dredging. The global CO2 emission from dredging is relatively high which is associated with the growth of marine transport in addition to its high emission. Thus, ejectors system as alternative for dredging is investigated in chapter 2. For the transition from fossil fuels to RES, it is required to provide solutions for the RES storage problem. A solution could be zero-emission fuels such as hydrogen. However, the production of hydrogen requires electricity, and electricity production emits a large amount of CO2. Therefore, the last three chapters are allocated to hydrogen generation via electrolysis, at the current condition and scenarios of RES and variation of cell characteristics and stack materials, and its delivery.