10 resultados para targeted therapeutics

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MYCN oncogene amplification/expression is a feature of many childhood tumors, and some adult tumors, and it is associated with poor prognosis. While MYC expression is ubiquitary, MYCN has a restricted expression after birth and it is an ideal target for an effective therapy. PNAs belong to the latest class of nucleic acid-based therapeutics, and they can bind chromosomal DNA and block gene transcription (anti-gene activity). We have developed an anti-gene PNA that targets specifically the MYCN gene to block its transcription. We report for the first time MYCN targeted inhibition in Rhabdomyosarcoma (RMS) by the anti-MYCN-PNA in RMS cell lines (four ARMS and four ERMS) and in a xenograft RMS mouse model. Rhabdomyosarcoma is the most common pediatric soft-tissue sarcoma, comprising two main subgroups [Alveolar (ARMS) and Embryonal (ERMS)]. ARMS is associated with a poorer prognosis. MYCN amplification is a feature of both the ERMS and ARMS, but the MYCN amplification and expression levels shows a significant correlation and are greater in ARMS, in which they are associated with adverse outcome. We found that MYCN mRNA and protein levels were higher in the four ARMS (RH30, RH4, RH28 and RMZ-RC2) than in the four ERMS (RH36, SMS-CTR, CCA and RD) cell lines. The potent inhibition of MYCN transcription was highly specific, it did not affect the MYC expression, it was followed by cell-growth inhibition in the RMS cell lines which correlated with the MYCN expression rate, and it led to complete cell-growth inhibition in ARMS cells. We used a mutated- PNA as control. MYCN silencing induced apoptosis. Global gene expression analysis (Affymetrix microarrays) in ARMS cells treated with the anti-MYCN-PNA revealed genes specifically induced or repressed, with both genes previously described as targets of N-myc or Myc, and new genes undescribed as targets of N-myc or Myc (mainly involved in cell cycle, apoptosis, cell motility, metastasis, angiogenesis and muscle development). The changes in the expression of the most relevant genes were confirmed by Real-Time PCR and western blot, and their expression after the MYCN silencing was evaluated in the other RMS cell lines. The in vivo study, using an ARMS xenograft murine model evaluated by micro-PET, showed a complete elimination of the metabolic tumor signal in most of the cases (70%) after anti-MYCN-PNA treatment (without toxicity), whereas treatment with the mutated-PNA had no effect. Our results strongly support the development of MYCN anti-gene therapy for the treatment of RMS, particularly for poor prognosis ARMS, and of other MYCN-expressing tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To evaluate the early response to treatment to an antiangiogenetic drug (sorafenib) in a heterotopic murine model of hepatocellular carcinoma (HCC) using ultrasonographic molecular imaging. Material and Methods: the xenographt model was established injecting a suspension of HuH7 cells subcutaneously in 19 nude mice. When tumors reached a mean diameter of 5-10 mm, they were divided in two groups (treatment and vehicle). The treatment group received sorafenib (62 mg/kg) by daily oral gavage for 14 days. Molecular imaging was performed using contrast enhanced ultrasound (CEUS), by injecting into the mouse venous circulation a suspension of VEGFR-2 targeted microbubbles (BR55, kind gift of Bracco Swiss, Geneve, Switzerland). Video clips were acquired for 6 minutes, then microbubbles (MBs) were destroyed by a high mechanical index (MI) impulse, and another minute was recorded to evaluate residual circulating MBs. The US protocol was repeated at day 0,+2,+4,+7, and +14 from the beginning of treatment administration. Video clips were analyzed using a dedicated software (Sonotumor, Bracco Swiss) to quantify the signal of the contrast agent. Time/intensity curves were obtained and the difference of the mean MBs signal before and after high MI impulse (Differential Targeted Enhancement-dTE) was calculated. dTE represents a numeric value in arbitrary units proportional to the amount of bound MBs. At day +14 mice were euthanized and the tumors analyzed for VEGFR-2, pERK, and CD31 tissue levels using western blot analysis. Results: dTE values decreased from day 0 to day +14 both in treatment and vehicle groups, and they were statistically higher in vehicle group than in treatment group at day +2, at day +7, and at day +14. With respect to the degree of tumor volume increase, measured as growth percentage delta (GPD), treatment group was divided in two sub-groups, non-responders (GPD>350%), and responders (GPD<200%). In the same way vehicle group was divided in slow growth group (GPD<400%), and fast growth group (GPD>900%). dTE values at day 0 (immediately before treatment start) were higher in non-responders than in responders group, with statistical difference at day 2. While dTE values were higher in the fast growth group than in the slow growth group only at day 0. A significant positive correlation was found between VEGFR-2 tissue levels and dTE values, confirming that level of BR55 tissue enhancement reflects the amount of tissue VEGF receptor. Conclusions: the present findings show that, at least in murine experimental models, CEUS with BR55 is feasable and appears to be a useful tool in the prediction of tumor growth and response to sorafenib treatment in xenograft HCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD33 is a myeloid cell surface marker absent on normal hematopoietic stem cells and normal tissues but present on leukemic blasts in 90% of adult and paediatric acute myeloid leukaemia (AML) cases. By virtue of its expression pattern and its ability to be rapidly internalized after antibody binding, CD33 has become an attractive target for new immunotherapeutic approaches to treat AML. In this study two immunoconjugates were constructed to contain a humanised single-chain fragment variable antibody (scFv) against CD33 in order to create new antibody-derived therapeutics for AML. The first immunoconjugate was developed to provide targeted delivery of siRNAs as death effectors into leukemic cells. To this purpose, a CD33-specific scFv, modified to include a Cys residue at its C-terminal end (scFvCD33-Cys), was coupled through a disulphide bridge to a nona-d-arginine (9R) peptide carrying a free Cys to the N-terminal. The scFvCD33-9R was able to completely bind siRNAs at a protein to nucleic acid ratio of about 10:1, as confirmed by electrophoretic gel mobility-shift assay. The conjugate was unable to efficiently transduce cytotoxic siRNA (siTox) into the human myeloid cell line U937. We observed slight reductions in cell viability, with a reduction of 25% in comparison to the control group only at high concentration of siTox (300 nM). The second immunoconjugate was constructed by coupling the scFvCD33-Cys to the type 1 ribosome inactivating protein Dianthin 30 (DIA30) through a chemical linking The resulting immunotoxin scFvCD33-DIA30 caused the rapid arrest of protein synthesis, inducing apoptosis and leading ultimately to cell death. In vitro dose-dependent cytotoxicity assays demonstrated that scFvCD33-DIA30 was specifically toxic to CD33-positive cell U937. The concentration needed to reach 50 % of maximum killing efficiency (EC50) was approximately 0.3 nM. The pronounced antigen-restricted cytotoxicity of this novel agent makes it a candidate for further evaluation of its therapeutic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone metastases are responsible for different clinical complications defined as skeletal-related events (SREs) such as pathologic fractures, spinal cord compression, hypercalcaemia, bone marrow infiltration and severe bone pain requiring palliative radiotherapy. The general aim of these three years research period was to improve the management of patients with bone metastases through two different approaches of translational research. Firstly in vitro preclinical tests were conducted on breast cancer cells and on indirect co-colture of cancer cells and osteoclasts to evaluate bone targeted therapy singly and in combination with conventional chemotherapy. The study suggests that zoledronic acid has an antitumor activity in breast cancer cell lines. Its mechanism of action involves the decrease of RAS and RHO, as in osteoclasts. Repeated treatment enhances antitumor activity compared to non-repeated treatment. Furthermore the combination Zoledronic Acid + Cisplatin induced a high antitumoral activity in the two triple-negative lines MDA-MB-231 and BRC-230. The p21, pMAPK and m-TOR pathways were regulated by this combined treatment, particularly at lower Cisplatin doses. A co-colture system to test the activity of bone-targeted molecules on monocytes-breast conditioned by breast cancer cells was also developed. Another important criticism of the treatment of breast cancer patients, is the selection of patients who will benefit of bone targeted therapy in the adjuvant setting. A retrospective case-control study on breast cancer patients to find new predictive markers of bone metastases in the primary tumors was performed. Eight markers were evaluated and TFF1 and CXCR4 were found to discriminate between patients with relapse to bone respect to patients with no evidence of disease. In particular TFF1 was the most accurate marker reaching a sensitivity of 63% and a specificity of 79%. This marker could be a useful tool for clinicians to select patients who could benefit for bone targeted therapy in adjuvant setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumours are characterized by a metabolic rewiring that helps transformed cells to survive in harsh conditions. The endogenous inhibitor of the ATP-synthase IF1 is overexpressed in several tumours and it has been proposed to drive metabolic adaptation. In ischemic normal-cells, IF1 acts limiting the ATP consumption by the reverse activity of the ATP-synthase, activated by ΔΨm collapse. Conversely, IF1 role in cancer cells is still unclear. It has been proposed that IF1 favours cancer survival by preventing energy dissipation in low oxygen availability, a frequent condition in solid tumours. Our previous data proved that in cancer cells hypoxia does not abolish ΔΨm, avoiding the ATP-synthase reversal and IF1 activation. In this study, we investigated the bioenergetics of cancer cells in conditions mimicking anoxia to evaluate the possible role of IF1. Data obtained indicate that also in cancer cells the ΔΨm collapse induces the ATP-synthase reversal and its inhibition by IF1. Moreover, we demonstrated that upon uncoupling conditions, IF1 favours cancer cells growth preserving ATP levels and energy charge. We also showed that in these conditions IF1 favours the mitochondrial mass renewal, a mechanism we proposed driving apoptosis-resistance. Cancer adaptability is also associated with the onset of therapy resistance, the major challenge for melanoma treatment. Recent studies demonstrated that miRNAs dysregulation drive melanoma progression and drug-resistance by regulating tumour-suppressor and oncogenes. In this context, we attempted to identify and characterize miRNAs driving resistance to vemurafenib in patient-derived metastatic melanoma cells BRAFV600E-mutated. Our results highlighted that several oncogenic pathways are altered in resistant cells, indicating the complexity of both drug-resistance phenomena and miRNAs action. Profiling analysis identified a group of dysregulated miRNAs conserved in vemurafenib-resistance cells from distinct patients, suggesting that they ubiquitously drive drug-resistance. Functional studies performed with a first miRNA confirmed its pivotal role in resistance towards vemurafenib.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute myeloid leukemia (AML) is a haematological malignancies arising from the accumulation of undifferentiated myeloid progenitors with an uncontrolled proliferation. The genomic landscape of AML revealed that the disease is characterized by high level of heterogeneity and is subjected to clonal evolution driven by selective pressure of chemotherapy. In this study, we investigated the therapeutic effects of the inhibition of BRD4 and CDC20 in vitro and ex vivo. We demonstrated that inhibition of BRD4 with GSK1215101A in AML cell lines was effective under hypoxia. It induced the activation of antioxidant response both, at transcriptomic and metabolomic levels, driven by enrichment of NRF2 pathway under normoxic and hypoxic condition. Moreover, the combined treatment with Omaveloxolone, a drug inducing NRF2 activation and NF-κB inhibition, potentiated the effects on apoptosis and colony forming capacity of stem progenitor cells. Lastly, gene expression profiling data revealed that combination treatment induced major changes in genes related to cell cycle, together with enrichment of cell differentiation pathways and negative regulation of WNT, in normoxia and hypoxia. Regarding CDC20, we observed its up-regulation in AML patients. Treatment with two different inhibitors, Apcin and proTAME, was effective in primary AML cells and in AML cell lines, through induction of apoptosis and mitotic arrest. The lack of correlation between proliferation markers and CDC20 levels in AML cell subpopulations supports the idea of alternative CDC20 functions, independent from its essential role during mitosis. CDC20-KD experiments conducted in AML cell lines revealed a mild effect on apoptosis induction, but no significant change in cell cycle progression. In summary, these results allowed the identification of a new strategy combination to improve the effects of BRD4 inhibition on LSC residing in the BM hypoxic niche, and provide some new evidence regarding the potential role of CDC20 as a new target for AML treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer is a disease that has plagued scientists for decades, and how to treat cancer and its complications are inevitable topics in current scientific research. Cancer pain is a major factor that reduces the quality of life of patients. Therefore, the development of analgesic agents with minimal adverse side effects, especially with low addiction, has attracted more and more attention. Among them, opioid analgesics are widely used to alleviate cancer pain and improve the quality of life of patients with advanced cancer, such as in the palliative therapy. Although peptide drugs are efficient, selective and safe, they have several unignorable disadvantages such as poor biological stability, rapid excretion, difficulty in penetrate blood brain barrier. In order to solve these problems, peptidomimetics were developed by introducing unnatural/modified amino acids, decorated peptide backbone, conformational restrictions and secondary structure mimics in peptide sequence. Compared with peptides, peptidomimetics have improved biological stability, increased bioavailability, high affinity and selectivity for receptor binding, and decreased adverse side effects. As the second part of this thesis, I explored the opportunity to design peptide-functionalized responsive biomaterials for the detection of cancer cell and the selective delivery of cytotoxic drugs. The conjugation of peptides with biomaterials enhanced the stability of the loaded drugs, improved targeted delivery, decreased side effects, and increased bioavailability. The precise and controllable drug delivery platform has profound application prospects in cancer treatment. Grafting specific peptides sequence on the surface of biomaterials can satisfy different drug delivery demands according to the characteristics of both peptides and biomaterials. For example, the introduction of tumor-targeting peptides can guide biomaterials into tumor lesions, and blood-brain barrier (BBB) shuttle peptides can lead biomaterials to penetrate the BBB, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the most common form of dementia, currently affecting more than 50 million people worldwide. In recent years attention towards this disease has risen in search for discovery and development of a drug that can stop it. Indeed, therapies for AD provide only temporary symptomatic relief. The cause for the high attrition rate for AD drug discovery has been attributed to several factors, including the fact that the AD pathogenesis is not yet fully understood. Nevertheless, what is increasingly recognized is that AD is a multifactorial syndrome, characterized by many conditions which may lead to neuronal death. Given this, it is widely accepted that a molecule able to modulate more than one target would bring benefit to the therapy of AD. In the first chapter of this thesis, there are reported two projects regarding the design and synthesis of new series of GSK-3/HDAC dual inhibitors, two of the main enzymes involved in AD. Two different series of compounds were synthesized and evaluated for their inhibitory activity towards the target enzymes. The best compounds of the series were selected for further biologic investigation to evaluate their properties. The second project focused on the design of non ATP-competitive GSK-3 inhibitors combined with HDAC inhibition properties. Also in this case, the best compounds of the series were selected for biologic investigation to further evaluate their properties. In chapter 2, the design and synthesis of a GSK-3-directed Proteolysis Targeting Chimeras (PROTAC), a new technology in drug discovery that act through degradation rather than inhibition, is reported. The design and synthesis of a small series of GSK-3-directed PROTACs was achieved. In vitro assays were performed to evaluate the GSK-3-degradation ability, the effective involvement of E3 ubiquitine ligase in the process and their neuroprotective abilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores the advancement of cancer treatment through targeted photodynamic therapy (PDT) using bioengineered phages. It aims to harness the specificity of phages for targeting cancer-related receptors such as EGFR and HER2, which are pivotal in numerous malignancies and associated with poor outcomes. The study commenced with the M13EGFR phage, modified to target EGFR through pIII-displayed EGFR-binding peptides, demonstrating enhanced killing efficiency when conjugated with the Rose Bengal photosensitizer. This phase underscored phages' potential in targeted PDT. A breakthrough was achieved with the development of the M137D12 phage, engineered to display the 7D12 nanobody for precise EGFR targeting, marking a shift from peptide-based to nanobody-based targeting and yielding better specificity and therapeutic results. The translational potential was highlighted through in vitro and in vivo assays employing therapeutic lasers, showing effective, specific cancer cell killing through a necrotic mechanism. Additionally, the research delved into the interaction between the M13CC phage and colon cancer models, demonstrating its ability to penetrate and disrupt cancer spheroids only upon irradiation, indicating a significant advancement in targeting cells within challenging tumor microenvironments. In summary, the thesis provides a thorough examination of the phage platform's efficacy and versatility for targeted PDT. The promising outcomes, especially with the M137D12 phage, and initial findings on a HER2-targeting phage (M13HER2), forecast a promising future for phage-mediated, targeted anticancer strategies employing photosensitizers in PDT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The early identification of responsive and resistant patients to androgen-receptor targeting agents (ARTA) in metastatic castration resistant-prostate cancer (CRPC) is not completely possible with PSA assessment and conventional imaging. Considering its ability to determine metabolic activity of lesions, PET assessment might be a promising tool. Materials and methods: We performed a monocentric prospective study in patients with metastatic CRPC under treatment with ARTA to evaluate the role of different PET radiotracers: 49 patients were randomized to receive 11C-Choline, 18F-FACBC or 68Ga-PSMA PET, one scan before therapy onset and one two months later. The primary aim was to investigate the performance of three different novel PET radiotracers for the early evaluation of response to ARTA in metastatic CRPC patients; with regards to this aim, the outcome evaluated was biochemical response (PSA reduction ≥50%). The secondary aim was to investigate the prognostic role of several semiquantitative PET parameters and their variations with the different radiotracers in terms of biochemical PFS (bPFS) and overall survival (OS). The study was promoted by the Italian Department of Health (code RF-2016-02364809). Results: With regards to the primary endpoint, at univariate analysis a statistically significant correlation was found between MTV_VARIATION% (p=0.018) and TLA_VARIATION% (p=0.025) with 68Ga-PSMA PET and biochemical response. As for the secondary endpoints, significant correlations with bPFS were found for 68Ga-PSMA PET MTV_TOT_PET1 (p=0.001), TLA_TOT_PET1 (p=0.025), MTV_VARIATION% (p=0.031). For OS, statistically significant correlations were found for: MAJ_SUV_MAX_PET1 with 11C-Choline PET (p=0.007); MTV_TOT_PET1 (p=0.004), MAJ_SUV_MAX_PET1 (p=0.029), SUVMAX_VARIATION% (p=0.04), MTV_VARIATION% (p=0.015), TLA_VARIATION% (p=0.03) with 68Ga-PSMA PET,; MTV_TOT_PET1 (p=0.011), TLA_TOT_PET1 (p=0.009), MAJ_SUV_MAX_PET1 (p=0.027), MTV_VARIATION% (p=0.048) with 18F-FACBC. Conclusions: Our prospective study highlighted that several 68Ga-PSMA and 18F-FACBC semiquantitative PET parameters and their variations present a prognostic value in terms of OS and bPFS and a correlation with biochemical response, that could help to assess response to ARTA.