12 resultados para synthetic high polymers

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research for new biocompatible and easily implantable materials continuously proposes new molecules and new substances with biological, chemical and physical characteristics, that are more and more adapted to aesthetic and reconstructive surgery and to the development of biomedical devices such as cardiovascular prostheses. Two classes of polymeric biomaterials seem to meet better these requirements: “hydrogels” , which includes polyalkylimide (PAI) and polyvinylalcohol (PVA) and “elastomers”, which includes polyurethanes (PUs). The first ones in the last decade have had a great application for soft tissue augmentation, due to their similarity to this tissue for their high water content, elasticity and oxygen permeability (Dini et al., 2005). The second ones, on the contrary, are widely used in cardiovascular applications (catheters, vascular grafts, ventricular assist devices, total artificial hearts) due to their good mechanical properties and hemocompatibility (Zdrahala R.J. and Zdrahala I.J., 1999). In the biocompatibility evaluation of these synthetic polymers, that is important for its potential use in clinical applications, a fundamental aspect is the knowledge of the polymers cytotoxicity and the effect of their interaction with cells, in particular with the cell populations involved in the inflammatory responses, i.e. monocyte/macrophages. In consideration of what above said, the aim of this study is the comprehension of the in vitro effect of PAI, PVA and PU on three cell lines that represent three different stages of macrophagic differentiation: U937 pro-monocytes, THP-1 monocytes and RAW 264.7 macrophages. Cytotoxicity was evaluated by measuring the rate of viability with MTT, Neutral Red and morphological analysis at light microscope in time-course dependent experiments. The influence of these polymers on monocyte/macrophage activation in terms of cells adhesion, monocyte differentiation in macrophages, antigens distribution, aspecific phagocytosis, fluid-phase endocitosis, pro-inflammatory cytokine (TNF-α, IL-1β, IL-6) and nitric oxide (NO) release was evaluated. In conclusion, our studies have indicated that the three different polymeric biomaterials are highly biocompatible, since they scarcely affected viability of U937, THP-1 and RAW 264.7 cells. Moreover, we have found that even though hydrogels and polyurethane influences monocyte/macrophage differentiation (depending on the particular type of cell and polymer), they are immunocompatible since they not induced significantly high cytokine release. For these reasons their clinical applications are strongly encouraged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dichloroindium hydride revealed to be a valid alternative to tributyltin hydride for radical reduction of organic (alkyl, aryl, acyl, solfonyl) azides. The new approach entails mild reaction conditions and provides high yields of the corresponding amines and amides, also showing high degrees of selectivity. The system dichloroindium hydride / azides can be utilised in fivemembered ring closures of g-azidonitriles, as a new source of aminyl radicals for the attractive synthesis of interesting amidine compounds in the absence of both toxic reagents and tedious purification procedures. Allylindium dichloride seems a good substitute for dichloroindium hydride for generation of indium centred radicals under photolytic conditions, since it allows allylation of electrophilic azides (e.g. phenylsulfonyl azide) and halogen or ester δ-substituted azides, the latter through a 1,5-H transfer rearrangement mechanism. Evidences of the radical nature of the reactions mechanism were provided by ESR spectroscopy, furthermore the same technique, allowed to discover that the reaction of azides with indium trichloride and other group XIII Lewis acids, in particular gallium trichloride, gives rise to strongly coloured, persistent paramagnetic species, whose structure is consistent with the radical cation of the head-to-tail dimer of the aniline corresponding to the starting azide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemists have long sought to extrapolate the power of biological catalysis and recognition to synthetic systems. These efforts have focused largely on low molecular weight catalysts and receptors; however, biological systems themselves rely almost exclusively on polymers, proteins and RNA, to perform complex chemical functions. Proteins and RNA are unique in their ability to adopt compact, well-ordered conformations, and specific folding provides precise spatial orientation of the functional groups that comprise the “active site”. These features suggest that identification of new polymer backbones with discrete and predictable folding propensities (“foldamers”) will provide a basis for design of molecular machines with unique capabilities. The foldamer approach complements current efforts to design unnatural properties into polypeptides and polynucleotides. The aim of this thesis is the synthesis and conformational studies of new classes of foldamers, using a peptidomimetic approach. Moreover their attitude to be utilized as ionophores, catalysts, and nanobiomaterials were analyzed in solution and in the solid state. This thesis is divided in thematically chapters that are reported below. It begins with a very general introduction (page 4) which is useful, but not strictly necessary, to the expert reader. It is worth mentioning that paragraph I.3 (page 22) is the starting point of this work and paragraph I.5 (page 32) isrequired to better understand the results of chapters 4 and 5. In chapter 1 (page 39) is reported the synthesis and conformational analysis of a novel class of foldamers containing (S)-β3-homophenylglycine [(S)-β3-hPhg] and D- 4-carboxy-oxazolidin-2-one (D-Oxd) residues in alternate order is reported. The experimental conformational analysis performed in solution by IR, 1HNMR, and CD spectroscopy unambiguously proved that these oligomers fold into ordered structures with increasing sequence length. Theoretical calculations employing ab initio MO theory suggest a helix with 11-membered hydrogenbonded rings as the preferred secondary structure type. The novel structures enrich the field of peptidic foldamers and might be useful in the mimicry of native peptides. In chapter 2 cyclo-(L-Ala-D-Oxd)3 and cyclo-(L-Ala-DOxd) 4 were prepared in the liquid phase with good overall yields and were utilized for bivalent ions chelation (Ca2+, Mg2+, Cu2+, Zn2+ and Hg2+); their chelation skill was analyzed with ESI-MS, CD and 1HNMR techniques and the best results were obtained with cyclo-(L-Ala-D-Oxd)3 and Mg2+ or Ca2+. Chapter 3 describes an application of oligopeptides as catalysts for aldol reactions. Paragraph 3.1 concerns the use of prolinamides as catalysts of the cross aldol addition of hydroxyacetone to aromatic aldeydes, whereas paragraphs 3.2 and 3.3 are about the catalyzed aldol addition of acetone to isatins. By means of DFT and AIM calculations, the steric and stereoelectronic effects that control the enantioselectivity in the cross-aldol addition of acetone to isatin catalysed by L-proline have been studied, also in the presence of small quantities of water. In chapter 4 is reported the synthesis and the analysis of a new fiber-like material, obtained from the selfaggregation of the dipeptide Boc-L-Phe-D-Oxd-OBn, which spontaneously forms uniform fibers consisting of parallel infinite linear chains arising from singleintermolecular N-H···O=C hydrogen bonds. This is the absolute borderline case of a parallel β-sheet structure. Longer oligomers of the same series with general formula Boc-(L-Phe-D-Oxd)n-OBn (where n = 2-5), are described in chapter 5. Their properties in solution and in the solid state were analyzed, in correlation with their attitude to form intramolecular hydrogen bond. In chapter 6 is reported the synthesis of imidazolidin-2- one-4-carboxylate and (tetrahydro)-pyrimidin-2-one-5- carboxylate, via an efficient modification of the Hofmann rearrangement. The reaction affords the desired compounds from protected asparagine or glutamine in good to high yield, using PhI(OAc)2 as source of iodine(III).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this Ph.D. project has been the design and characterization of new and more efficient luminescent tools, in particular sensors and labels, for analytical chemistry, medical diagnostics and imaging. Actually both the increasing temporal and spatial resolutions that are demanded by those branches, coupled to a sensitivity that is required to reach the single molecule resolution, can be provided by the wide range of techniques based on luminescence spectroscopy. As far as the development of new chemical sensors is concerned, as chemists we were interested in the preparation of new, efficient, sensing materials. In this context, we kept developing new molecular chemosensors, by exploiting the supramolecular approach, for different classes of analytes. In particular we studied a family of luminescent tetrapodal-hosts based on aminopyridinium units with pyrenyl groups for the detection of anions. These systems exhibited noticeable changes in the photophysical properties, depending on the nature of the anion; in particular, addition of chloride resulted in a conformational change, giving an initial increase in excimeric emission. A good selectivity for dicarboxylic acid was also found. In the search for higher sensitivities, we moved our attention also to systems able to perform amplification effects. In this context we described the metal ion binding properties of three photoactive poly-(arylene ethynylene) co-polymers with different complexing units and we highlighted, for one of them, a ten-fold amplification of the response in case of addition of Zn2+, Cu2+ and Hg2+ ions. In addition, we were able to demonstrate the formation of complexes with Yb3+ an Er3+ and an efficient sensitization of their typical metal centered NIR emission upon excitation of the polymer structure, this feature being of particular interest for their possible applications in optical imaging and in optical amplification for telecommunication purposes. An amplification effect was also observed during this research in silica nanoparticles derivatized with a suitable zinc probe. In this case we were able to prove, for the first time, that nanoparticles can work as “off-on” chemosensors with signal amplification. Fluorescent silica nanoparticles can be thus seen as innovative multicomponent systems in which the organization of photophysically active units gives rise to fruitful collective effects. These precious effects can be exploited for biological imaging, medical diagnostic and therapeutics, as evidenced also by some results reported in this thesis. In particular, the observed amplification effect has been obtained thanks to a suitable organization of molecular probe units onto the surface of the nanoparticles. In the effort of reaching a deeper inside in the mechanisms which lead to the final amplification effects, we also attempted to find a correlation between the synthetic route and the final organization of the active molecules in the silica network, and thus with those mutual interactions between one another which result in the emerging, collective behavior, responsible for the desired signal amplification. In this context, we firstly investigated the process of formation of silica nanoparticles doped with pyrene derivative and we showed that the dyes are not uniformly dispersed inside the silica matrix; thus, core-shell structures can be formed spontaneously in a one step synthesis. Moreover, as far as the design of new labels is concerned, we reported a new synthetic approach to obtain a class of robust, biocompatible silica core-shell nanoparticles able to show a long-term stability. Taking advantage of this new approach we also showed the synthesis and photophysical properties of core-shell NIR absorbing and emitting materials that proved to be very valuable for in-vivo imaging. In general, the dye doped silica nanoparticles prepared in the framework of this project can conjugate unique properties, such as a very high brightness, due to the possibility to include many fluorophores per nanoparticle, high stability, because of the shielding effect of the silica matrix, and, to date, no toxicity, with a simple and low-cost preparation. All these features make these nanostructures suitable to reach the low detection limits that are nowadays required for effective clinical and environmental applications, fulfilling in this way the initial expectations of this research project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of mass transport in polymeric membranes has grown in importance due to its potential application in many processes such as separation of gases and vapors, packaging, controlled drug release. The diffusion of a low molecular weight species in a polymer is often accompanied by other phenomena like swelling, reactions, stresses, that have not been investigated in all their aspects yet. Furthermore, novel materials have been developed that include inorganic fillers, reactive functional groups or ions, that make the scenery even more complicated. The present work focused on the experimental study of systems where the diffusion is accompanied by other processes; suitable models were also developed to describe the particular circumstances in order to understand the underlying concepts and be able to design the performances of the material. The effect of solvent-induced deformation in polymeric films during sorption processes was studied since the dilation, especially in constrained membranes, can cause the development of stresses and therefore early failures of the material. The bending beam technique was used to test the effects of the dilation and the stress induced in the polymer by penetrant diffusion. A model based on the laminate theory was developed that accounts for the swelling and is able to predict the stress that raise in the material. The addition of inorganic fillers affects the transport properties of polymeric films. Mixed matrix membranes based on fluorinated, high free volume matrices show attractive performances for separation purposes but there is a need for deeper investigation of the selectivity properties towards gases and vapors. A new procedure based on the NELF model was tested on the experimental data; it allows to predict solubility of every penetrant on the basis of data for one vapor. The method has proved to be useful also for the determination of the diffusion coefficient and for an estimation of the permeability in the composite materials. Oxygen scavenging systems can overcome lack of barrier properties in common polymers that forbids their application in sensitive applications as food packaging. The final goal of obtaining a membrane almost impermeable to oxygen leads to experimental times out of reach. Hence, a simple model was developed in order to describe the transport of oxygen in a membrane with also reactive groups and analyze the experimental data collected on SBS copolymers that show attractive scavenging capacity. Furthermore, a model for predicting the oxygen barrier behavior of a film formed as a blend of OSP in a common packaging material was built, considering particles capable of reactions with oxygen embedded in a non-reactive matrix. Perfluorosulphonic acid ionomers (PFSI) are capturing attention due to a high thermal and chemical resistance coupled with very peculiar transport properties, that make them appropriate to be used in fuel cells. The possible effect of different formation procedure was studied together with the swelling due to water sorption since both water uptake and dilation can dramatically affect the fuel cells performances. The water diffusion and sorption was studied with a FTIR-ATR spectrometer that can give deeper information on the bonds between water molecules and the sulphonic hydrophilic groups and, therefore, on the microstructure of the hydrated ionomer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theory of the 3D multipole probability tomography method (3D GPT) to image source poles, dipoles, quadrupoles and octopoles, of a geophysical vector or scalar field dataset is developed. A geophysical dataset is assumed to be the response of an aggregation of poles, dipoles, quadrupoles and octopoles. These physical sources are used to reconstruct without a priori assumptions the most probable position and shape of the true geophysical buried sources, by determining the location of their centres and critical points of their boundaries, as corners, wedges and vertices. This theory, then, is adapted to the geoelectrical, gravity and self potential methods. A few synthetic examples using simple geometries and three field examples are discussed in order to demonstrate the notably enhanced resolution power of the new approach. At first, the application to a field example related to a dipole–dipole geoelectrical survey carried out in the archaeological park of Pompei is presented. The survey was finalised to recognize remains of the ancient Roman urban network including roads, squares and buildings, which were buried under the thick pyroclastic cover fallen during the 79 AD Vesuvius eruption. The revealed anomaly structures are ascribed to wellpreserved remnants of some aligned walls of Roman edifices, buried and partially destroyed by the 79 AD Vesuvius pyroclastic fall. Then, a field example related to a gravity survey carried out in the volcanic area of Mount Etna (Sicily, Italy) is presented, aimed at imaging as accurately as possible the differential mass density structure within the first few km of depth inside the volcanic apparatus. An assemblage of vertical prismatic blocks appears to be the most probable gravity model of the Etna apparatus within the first 5 km of depth below sea level. Finally, an experimental SP dataset collected in the Mt. Somma-Vesuvius volcanic district (Naples, Italy) is elaborated in order to define location and shape of the sources of two SP anomalies of opposite sign detected in the northwestern sector of the surveyed area. The modelled sources are interpreted as the polarization state induced by an intense hydrothermal convective flow mechanism within the volcanic apparatus, from the free surface down to about 3 km of depth b.s.l..

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports an integrated analytical approach for the study of physicochemical and biological properties of new synthetic bile acid (BA) analogues agonists of FXR and TGR5 receptors. Structure-activity data were compared with those previous obtained using the same experimental protocols on synthetic and natural occurring BA. The new synthetic BA analogues are classified in different groups according also to their potency as a FXR and TGR5 agonists: unconjugated and steroid modified BA and side chain modified BA including taurine or glycine conjugates and pseudo-conjugates (sulphonate and sulphate analogues). In order to investigate the relationship between structure and activity the synthetic analogues where admitted to a physicochemical characterization and to a preliminary screening for their pharmacokinetic and metabolism using a bile fistula rat model. Sensitive and accurate analytical methods have been developed for the quali-quantitative analysis of BA in biological fluids and sample used for physicochemical studies. Combined High Performance Liquid Chromatography Electrospray tandem mass spectrometry with efficient chromatographic separation of all studied BA and their metabolites have been optimized and validated. Analytical strategies for the identification of the BA and their minor metabolites have been developed. Taurine and glycine conjugates were identified in MS/MS by monitoring the specific ion transitions in multiple reaction monitoring (MRM) mode while all other metabolites (sulphate, glucuronic acid, dehydroxylated, decarboxylated or oxo) were monitored in a selected-ion reaction (SIR) mode with a negative ESI interface by the following ions. Accurate and precise data where achieved regarding the main physicochemical properties including solubility, detergency, lipophilicity and albumin binding . These studies have shown that minor structural modification greatly affect the pharmacokinetics and metabolism of the new analogues in respect to the natural BA and on turn their site of action, particularly where their receptor are located in the enterohepatic circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodegradable polymers for short time applications have attracted much interest all over the world. The reason behind this growing interest is the incompatibility of the polymeric wastes with the environment where they are disposed after usage. Synthetic aliphatic polyesters represent one of the most economically competitive biodegradable polymers. In addition, they gained considerable attention as they combine biodegradability and biocompatibility with interesting physical and chemical properties. In this framework, the present research work focused on the modification by reactive blending and polycondensation of two different aliphatic polyesters, namely poly(butylene succinate) (PBS) and poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE). Both are characterized by good thermal properties, but their mechanical characteristics do not fit the requirements for applications in which high flexibility is requested and, moreover, both show slow biodegradation rate. With the aim of developing new materials with improved characteristics with respect to the parent homopolymers, novel etheroatom containing PBS and PBCE-based fully aliphatic polyesters and copolyesters have been therefore synthesized and carefully characterized. The introduction of oxygen or sulphur atoms along the polymer chains, by acting on chemical composition or molecular architecture, tailored solid-state properties and biodegradation rate: type and amount of comonomeric units and sequence distribution deeply affected the material final properties owing, among all, to the hydrophobic/hydrophilic ratio and to the different ability of the polymer to crystallize. The versatility of the synthesized copolymers has been well proved: as a matter of fact these polymers can be exploited both for biomedical and ecological applications. Feasibility of 3D electrospun scaffolds has been investigated, biocompatibility studies and controlled release of a model molecule showed good responses. As regards ecological applications, barrier properties and eco-toxicological assessments have been conducted with outstanding results. Finally, the ability of the novel polyesters to undergo both hydrolytic and enzymatic degradation has been demonstrated under physiological and environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charge transport in conjugated polymers as well as in bulk-heterojunction (BHJ) solar cells made of blends between conjugated polymers, as electron-donors (D), and fullerenes, as electron-acceptors (A), has been investigated. It is shown how charge carrier mobility of a series of anthracene-containing poly(p-phenylene-ethynylene)-alt-poly(p-phenylene-vinylene)s (AnE-PVs) is highly dependent on the lateral chain of the polymers, on a moderate variation of the macromolecular parameters (molecular weight and polydispersity), and on the processing conditions of the films. For the first time, the good ambipolar transport properties of this relevant class of conjugated polymers have been demonstrated, consistent with the high delocalization of both the frontier molecular orbitals. Charge transport is one of the key parameters in the operation of BHJ solar cells and depends both on charge carrier mobility in pristine materials and on the nanoscale morphology of the D/A blend, as proved by the results here reported. A straight correlation between hole mobility in pristine AnE-PVs and the fill factor of the related solar cells has been found. The great impact of charge transport for the performance of BHJ solar cells is clearly demonstrated by the results obtained on BHJ solar cells made of neat-C70, instead of the common soluble fullerene derivatives (PCBM or PC70BM). The investigation of neat-C70 solar cells was motivated by the extremely low cost of non-functionalized fullerenes, compared with that of their soluble derivatives (about one-tenth). For these cells, an improper morphology of the blend leads to a deterioration of charge carrier mobility, which, in turn, increases charge carrier recombination. Thanks to the appropriate choice of the donor component, solar cells made of neat-C70 exhibiting an efficiency of 4.22% have been realized, with an efficiency loss of just 12% with respect to the counterpart made with costly PC70BM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present research project focuses its attention on the study of structure-property relations in polymers from renewable sources (bio-based polymers) such as polymers microbially produced, i.e. polyhydrohyalkanoates (PHAs) or chemically synthesized using monomers from renewable sources, i.e. polyammide 11 (PA11). By means of a broad spectrum of experimental techniques, the influence of different modifications on bio-based polymers such as blending with other components, copolymerization with different co-monomers and introduction of branching to yield complex architectures have been investigated. The present work on PHAs focused on the study of the dependence of polymer properties on both the fermentation process conditions (e.g. bacterial strain and carbon substrate used) and the method adopted to recover PHAs from cells. Furthermore, a solvent-free method using an enzyme and chemicals in an aqueous medium, was developed in order to recover PHAs from cells. Such a method allowed to recover PHA granules in their amorphous state, i.e. in native form useful for specific applications (e.g. paper coating). In addition, a commercial PHA was used as polymeric matrix to develop biodegradable and bio-based composites for food packaging applications. Biodegradable, non-toxic, food contact plasticizers and low cost, widely available lignocellulosic fibers (wheat straw fibers) were incorporated in such a polymeric matrix, in order to decrease PHA brittleness and the polymer cost, respectively. As concerns the study of polyamide 11, both the rheological and the solid-state behavior of PA11 star samples with different arm number and length was studied. Introduction of arms in a polymer molecule allows to modulate melt viscosity behavior which is advantageous for industrial applications. Also, several important solid-state properties, in particular mechanical properties, are affected by the presence of branching. Given the importance of using ‘green’ synthetic strategies in polymer chemistry, novel poly(-amino esters), synthesized via enzymatic-catalyzed polymerization, have also been investigated in this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioconjugation of peptides and asymmetric synthesis of gem-difluoromethylene compounds are areas of the modern organic chemistry for which mild and selective methods continue to be developed. This thesis reports new methodologies for these two areas based on the use of stabilized carbenium ions. The reaction that makes the bioconjugation of peptides possible takes place via the direct nucleophilic substitution of alcohols and is driven by the spontaneous formation of stabilized carbenium ions in water. By reacting with the thiol group of cysteine in very mild conditions and with a high selectivity, these carbenium ions allow the site-specific ligation of polypeptides containing cysteine and their covalent derivatization with functionalized probes. The ligation of the indole ring of tryptophan, an emerging target in bioconjugation, is also shown and takes place in the same conditions. The second area investigated is the challenging access to optically active gem-difluoromethylene compounds. We describe a methodology relying on the synthesis of enantioenriched 1,3-benzodithioles intermediates that are shown to be precursors of the corresponding gem-difluoromethylene analogues by oxidative desulfurization-fluorination. This synthesis takes advantage of the highly enantioselective organocatalytic α-alkylation of aldehydes with the benzodithiolylium ion and of the wide possibilities of synthetic transformations offered by the 1,3-benzodithiole group. This approach allows the asymmetric access to complex gem-difluoromethylene compounds through a late-stage fluorination step, thus avoiding the use of fluorinated building blocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas separation membranes of high CO2 permeability and selectivity have great potential in both natural gas sweetening and carbon dioxide capture. Many modified PIM membranes results permselectivity above Robinson upper bound. The big problem that should be solved for these polymers to be commercialized is their aging through time. In high glassy polymeric membrane such as PIM-1 and its modifications, solubility selectivity has more contribution towards permselectivity than diffusivity selectivity. So in this thesis work pure and mixed gas sorption behavior of carbon dioxide and methane in three PIM-based membranes (PIM-1, TZPIM-1 and AO-PIM-1) and Polynonene membrane is rigorously studied. Sorption experiment is performed at different temperatures and molar fraction. Sorption isotherms found from the experiment shows that there is a decrease of solubility as the temperature of the experiment increases for both gases in all polymers. There is also a decrease of solubility due to the presence of the other gas in the system in the mixed gas experiments due to competitive sorption effect. Variation of solubility is more visible in methane sorption than carbon dioxide, which will make the mixed gas solubility selectivity higher than that of pure gas solubility selectivity. Modeling of the system using NELF and Dual mode sorption model estimates the experimental results correctly Sorption of gases in heat treated and untreated membranes show that the sorption isotherms don’t vary due to the application of heat treatment for both carbon dioxide and methane. But there is decrease in the diffusivity coefficient and permeability of pure gases due to heat treatment. Both diffusivity coefficient and permeability decreases with increasing of heat treatment temperature. Diffusivity coefficient calculated from transient sorption experiment and steady state permeability experiment is also compared in this thesis work. The results reveal that transient diffusivity coefficient is higher than steady state diffusivity selectivity.