4 resultados para synthetic gene circuits
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Synthetic biology is a young field of applicative research aiming to design and build up artificial biological devices, useful for human applications. How synthetic biology emerged in past years and how the development of the Registry of Standard Biological Parts aimed to introduce one practical starting solution to apply the basics of engineering to molecular biology is presented in chapter 1 in the thesis The same chapter recalls how biological parts can make up a genetic program, the molecular cloning tecnique useful for this purpose, and an overview of the mathematical modeling adopted to describe gene circuit behavior. Although the design of gene circuits has become feasible the increasing complexity of gene networks asks for a rational approach to design gene circuits. A bottom-up approach was proposed, suggesting that the behavior of a complicated system can be predicted from the features of its parts. The option to use modular parts in large-scale networks will be facilitated by a detailed and shared characterization of their functional properties. Such a prediction, requires well-characterized mathematical models of the parts and of how they behave when assembled together. In chapter 2, the feasibility of the bottom-up approach in the design of a synthetic program in Escherichia coli bacterial cells is described. The rational design of gene networks is however far from being established. The synthetic biology approach can used the mathematical formalism to identify biological information not assessable with experimental measurements. In this context, chapter 3 describes the design of a synthetic sensor for identifying molecules of interest inside eukaryotic cells. The Registry of Standard parts collects standard and modular biological parts. To spread the use of BioBricks the iGEM competition was started. The ICM Laboratory, where Francesca Ceroni completed her Ph.D, partecipated with teams of students and Chapter 4 summarizes the projects developed.
Resumo:
During the last few years, a great deal of interest has risen concerning the applications of stochastic methods to several biochemical and biological phenomena. Phenomena like gene expression, cellular memory, bet-hedging strategy in bacterial growth and many others, cannot be described by continuous stochastic models due to their intrinsic discreteness and randomness. In this thesis I have used the Chemical Master Equation (CME) technique to modelize some feedback cycles and analyzing their properties, including experimental data. In the first part of this work, the effect of stochastic stability is discussed on a toy model of the genetic switch that triggers the cellular division, which malfunctioning is known to be one of the hallmarks of cancer. The second system I have worked on is the so-called futile cycle, a closed cycle of two enzymatic reactions that adds and removes a chemical compound, called phosphate group, to a specific substrate. I have thus investigated how adding noise to the enzyme (that is usually in the order of few hundred molecules) modifies the probability of observing a specific number of phosphorylated substrate molecules, and confirmed theoretical predictions with numerical simulations. In the third part the results of the study of a chain of multiple phosphorylation-dephosphorylation cycles will be presented. We will discuss an approximation method for the exact solution in the bidimensional case and the relationship that this method has with the thermodynamic properties of the system, which is an open system far from equilibrium.In the last section the agreement between the theoretical prediction of the total protein quantity in a mouse cells population and the observed quantity will be shown, measured via fluorescence microscopy.
Resumo:
Folates (vitamin B9) are essential water soluble vitamins, whose deficiency in humans may contribute to the onset of several diseases, such as anaemia, cancer, cardiovascular diseases, neurological problems as well as defects in embryonic development. Human and other mammals are unable to synthesize ex novo folate obtaining it from exogenous sources, via intestinal absorption. Recently the gut microbiota has been identified as an important source of folates and the selection and use of folate producing microorganisms represents an innovative strategy to increase human folate levels. The aim of this thesis was to gain a fundamental understanding of folate metabolism in Bifidobacterium adolescentis. The work was subdivided in three main phases, also aimed to solve different problems encountered working with Bifidobacterium strains. First, a new identification method (based on PCR-RFLP of hsp60 gene) was specifically developed to identify Bifidobacterium strains. Secondly, Bifidobacterium adolescentis biodiversity was explored in order to recognize representing strains of this species to be screened for their folate production ability. Results showed that this species is characterized by a wide variability and support the idea that a possible new taxonomic re-organization would be required. Finally B. adolescentis folate metabolism was studied using a double approach. A quantitative analysis of folate content was complemented by the examination of expression levels of genes involved in folate related pathways. For the normalization process, required to increase the robustness of the qRT-PCR analysis, an appropriate set of reference genes was tested using two different algorithms. Results demonstrate that B.adolescentis strains may represent an endogenous source of natural folate and they could be used to fortify fermented dairy products. This bio-fortification strategy presents many advantages for the consumer, providing native folate forms more bio-available, and not implicated in the discussed controversy concerning the safety of high intake of synthetic folic acid.
Resumo:
Synthetic lethality represents an anticancer strategy that targets tumor specific gene defects. One of the most studied application is the use of PARP inhibitors (e.g. olaparib) in BRCA1/2-less cancer cells. In BRCA2-defective tumors, olaparib (OLA) inhibits DNA single-strand break repair, while BRCA2 mutations hamper homologous recombination (HR) repair. The simultaneous impairment of those pathways leads BRCA-less cells to death by synthetic lethality. The projects described in this thesis were aimed at extending the use of OLA in cancer cells that do not carry a mutation in BRCA2 by combining this drug with compounds that could mimic a BRCA-less environment via HR inhibition. We demonstrated the effectiveness of our “fully small-molecule induced synthetic lethality” by using two different approaches. In the direct approach (Project A), we identified a series of neo-synthesized compounds (named RAD51-BRCA2 disruptors) that mimic BRCA2 mutations by disrupting the RAD51-BRCA2 interaction and thus the HR pathway. Compound ARN 24089 inhibited HR in human pancreatic adenocarcinoma cell line and triggered synthetic lethality by synergizing with OLA. Interestingly, the observed synthetic lethality was triggered by tackling two biochemically different mechanisms: enzyme inhibition (PARP) and protein-protein disruption (RAD51-BRCA2). In the indirect approach (Project B), we inhibited HR by interfering with the cellular metabolism through inhibition of LDH activity. The obtained data suggest an LDH-mediated control on HR that can be exerted by regulating either the energy supply needed to this repair mechanism or the expression level of genes involved in DNA repair. LDH inhibition also succeeded in increasing the efficiency of OLA in BRCA-proficient cell lines. Although preliminary, these results highlight a complex relationship between metabolic reactions and the control of DNA integrity. Both the described projects proved that our “fully small-molecule-induced synthetic lethality” approach could be an innovative approach to unmet oncological needs.