6 resultados para surprising and harsh conditions
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The cardiomyocyte is a complex biological system where many mechanisms interact non-linearly to regulate the coupling between electrical excitation and mechanical contraction. For this reason, the development of mathematical models is fundamental in the field of cardiac electrophysiology, where the use of computational tools has become complementary to the classical experimentation. My doctoral research has been focusing on the development of such models for investigating the regulation of ventricular excitation-contraction coupling at the single cell level. In particular, the following researches are presented in this thesis: 1) Study of the unexpected deleterious effect of a Na channel blocker on a long QT syndrome type 3 patient. Experimental results were used to tune a Na current model that recapitulates the effect of the mutation and the treatment, in order to investigate how these influence the human action potential. Our research suggested that the analysis of the clinical phenotype is not sufficient for recommending drugs to patients carrying mutations with undefined electrophysiological properties. 2) Development of a model of L-type Ca channel inactivation in rabbit myocytes to faithfully reproduce the relative roles of voltage- and Ca-dependent inactivation. The model was applied to the analysis of Ca current inactivation kinetics during normal and abnormal repolarization, and predicts arrhythmogenic activity when inhibiting Ca-dependent inactivation, which is the predominant mechanism in physiological conditions. 3) Analysis of the arrhythmogenic consequences of the crosstalk between β-adrenergic and Ca-calmodulin dependent protein kinase signaling pathways. The descriptions of the two regulatory mechanisms, both enhanced in heart failure, were integrated into a novel murine action potential model to investigate how they concur to the development of cardiac arrhythmias. These studies show how mathematical modeling is suitable to provide new insights into the mechanisms underlying cardiac excitation-contraction coupling and arrhythmogenesis.
Resumo:
Sweet sorghum, a C4 crop of tropical origin, is gaining momentum as a multipurpose feedstock to tackle the growing environmental, food and energy security demands. Under temperate climates sweet sorghum is considered as a potential bioethanol feedstock, however, being a relatively new crop in such areas its physiological and metabolic adaptability has to be evaluated; especially to the more frequent and severe drought spells occurring throughout the growing season and to the cold temperatures during the establishment period of the crop. The objective of this thesis was to evaluate some adaptive photosynthetic traits of sweet sorghum to drought and cold stress, both under field and controlled conditions. To meet such goal, a series of experiments were carried out. A new cold-tolerant sweet sorghum genotype was sown in rhizotrons of 1 m3 in order to evaluate its tolerance to progressive drought until plant death at young and mature stages. Young plants were able to retain high photosynthetic rate for 10 days longer than mature plants. Such response was associated to the efficient PSII down-regulation capacity mediated by light energy dissipation, closure of reaction centers (JIP-test parameters), and accumulation of glucose and sucrose. On the other hand, when sweet sorghum plants went into blooming stage, neither energy dissipation nor sugar accumulation counteracted the negative effect of drought. Two hybrids with contrastable cold tolerance, selected from an early sowing field trial were subjected to chilling temperatures under controlled growth conditions to evaluate in deep their physiological and metabolic cold adaptation mechanisms. The hybrid which poorly performed under field conditions (ICSSH31), showed earlier metabolic changes (Chl a + b, xanthophyll cycle) and greater inhibition of enzymatic activity (Rubisco and PEPcase activity) than the cold tolerant hybrid (Bulldozer). Important insights on the potential adaptability of sweet sorghum to temperate climates are given.
Resumo:
Virgin olive oil(VOO) is a product characterized by high economic and nutritional values, because of its superior sensory characteristics and minor compounds (phenols and tocopherols) contents. Since the original quality of VOO may change during its storage, this study aimed to investigate the influence of different storage and shipment conditions on the quality of VOO, by studying different solutions such as filtration, dark storage and shipment inside insulated containers to protect it. Different analytical techniques were used to follow-up the quality changes during virgin olive oil storage and simulated shipments, in terms of basic quality parameters, sensory analysis and evaluation of minor components (phenolic compounds, diglycerides, volatile compounds). Four main research streams were presented in this PhD thesis: The results obtained from the first experimental section revealed that the application of filtration and/or clarification can decrease the unavoidable quality loss of the oil samples during storage, in comparison with unfiltered oil samples. The second section indicated that the virgin olive oil freshness, evaluated by diglycerides content, was mainly affected by the storage time and temperature. The third section revealed that fluctuation in temperature during storage may adversely affect the virgin olive oil quality, in terms of hydrolytic rancidity and oxidation quality. The fourth section showed that virgin olive oil shipped inside insulated containers showed lower hydrolytic and oxidation degradation than those without insulation cover. Overall, this PhD thesis highlighted that application of adequate treatment, such as filtration or clarification, in addition to a good protection against other external variables, such as temperature and light, will improve the stability of virgin olive oil during storage.
Resumo:
Italy has a preeminent rank in kiwifruit industry, being the first exporter and the second largest producer after China. However, in the last years kiwifruit yields and the total cultivated area considerably decreased, due to the pandemic spread of the bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa). Several climatic conditions and cultural practices affect the development of the bacterial canker. This research work focused on the impact of agricultural practices and microclimate conditions on the incidence and epidemiology of Psa in the orchard. Therefore, the effect of fertilization, irrigation, use of bio-regulators, rootstock, training system and pruning were examined. The effect of different tunnel systems was analyzed as well, to study the plant-pathogen interaction. Considering the importance of insects as vectors in other pathosystems, the role of Metcalfa pruinosa in the spread of the bacterial canker was investigated in controlled conditions. In addition, quality and storage properties of fruits from infected plants were assessed. The study of all these aspects of the agronomic practices is useful to define a strategy to limit the bacterial diffusion in the orchard. Overall, excess nitrogen fertilization, water stress, stagnant water supplies, pruning before summer and the high number of Metcalfa pruinosa increased the Psa incidence. In contrast, tunnel covers may be useful for the control of the disease, with special attention to the kind of material.
Resumo:
Tumours are characterized by a metabolic rewiring that helps transformed cells to survive in harsh conditions. The endogenous inhibitor of the ATP-synthase IF1 is overexpressed in several tumours and it has been proposed to drive metabolic adaptation. In ischemic normal-cells, IF1 acts limiting the ATP consumption by the reverse activity of the ATP-synthase, activated by ΔΨm collapse. Conversely, IF1 role in cancer cells is still unclear. It has been proposed that IF1 favours cancer survival by preventing energy dissipation in low oxygen availability, a frequent condition in solid tumours. Our previous data proved that in cancer cells hypoxia does not abolish ΔΨm, avoiding the ATP-synthase reversal and IF1 activation. In this study, we investigated the bioenergetics of cancer cells in conditions mimicking anoxia to evaluate the possible role of IF1. Data obtained indicate that also in cancer cells the ΔΨm collapse induces the ATP-synthase reversal and its inhibition by IF1. Moreover, we demonstrated that upon uncoupling conditions, IF1 favours cancer cells growth preserving ATP levels and energy charge. We also showed that in these conditions IF1 favours the mitochondrial mass renewal, a mechanism we proposed driving apoptosis-resistance. Cancer adaptability is also associated with the onset of therapy resistance, the major challenge for melanoma treatment. Recent studies demonstrated that miRNAs dysregulation drive melanoma progression and drug-resistance by regulating tumour-suppressor and oncogenes. In this context, we attempted to identify and characterize miRNAs driving resistance to vemurafenib in patient-derived metastatic melanoma cells BRAFV600E-mutated. Our results highlighted that several oncogenic pathways are altered in resistant cells, indicating the complexity of both drug-resistance phenomena and miRNAs action. Profiling analysis identified a group of dysregulated miRNAs conserved in vemurafenib-resistance cells from distinct patients, suggesting that they ubiquitously drive drug-resistance. Functional studies performed with a first miRNA confirmed its pivotal role in resistance towards vemurafenib.
Resumo:
In Europe, the current demand for vegetable oils and the need to find alternative crops for the regions most affected by climate change (i.e., Mediterranean basin) may be a launchpad for camelina [Camelina sativa (L.) Crantz] to be steadily introduced in European cropping systems. Camelina is mainly known for the unique composition of its oil, with a fatty acids profile including more than 50% content of essential linoleic and linolenic fatty acids, and a high tocopherol content. Being tocopherols part of the vitamin E family of antioxidants, the added value of growing camelina in harsh environments could be the enhancement of tocopherol content in camelina oil, thus having a more stable and nutritionally valuable product. With the final purpose of fully valorize camelina as a tolerant, valuable-oil producing crop for the Mediterranean basin, the main aim of this study was to investigate whether and how sowing date, cultivar choice, and abiotic stresses can affect tocopherol content and composition in camelina oil. The results showed that cultivar choice and growing conditions influenced total tocopherol, γ-tocopherol, and α-tocopherol contents. Moreover, heat stress trial revealed that high temperature increased α-tocopherol content, while no effect was observed in total tocopherols and in γ-tocopherol content. Finally, drought increased total tocopherols in camelina, and in drought-sensitive lines an increase in α-tocopherol was observed. This study allowed to acquire awareness on camelina resistance to abiotic stresses, coupled with a better knowledge on tocopherol content and composition in relation to cultivar, sowing date, and abiotic stresses. This will have an impact for the introduction of camelina as an alternative crop in harsher environments, such as the Mediterranean basin, to produce an oil suitable for food, feed, and industrial applications.