6 resultados para support structure
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Eukaryotic ribosomal DNA constitutes a multi gene family organized in a cluster called nucleolar organizer region (NOR); this region is composed usually by hundreds to thousands of tandemly repeated units. Ribosomal genes, being repeated sequences, evolve following the typical pattern of concerted evolution. The autonomous retroelement R2 inserts in the ribosomal gene 28S, leading to defective 28S rDNA genes. R2 element, being a retrotransposon, performs its activity in the genome multiplying its copy number through a “copy and paste” mechanism called target primed reverse transcription. It consists in the retrotranscription of the element’s mRNA into DNA, then the DNA is integrated in the target site. Since the retrotranscription can be interrupted, but the integration will be carried out anyway, truncated copies of the element will also be present in the genome. The study of these truncated variants is a tool to examine the activity of the element. R2 phylogeny appears, in general, not consistent with that of its hosts, except some cases (e.g. Drosophila spp. and Reticulitermes spp.); moreover R2 is absent in some species (Fugu rubripes, human, mouse, etc.), while other species have more R2 lineages in their genome (the turtle Mauremys reevesii, the Japanese beetle Popilia japonica, etc). R2 elements here presented are isolated in 4 species of notostracan branchiopods and in two species of stick insects, whose reproductive strategies range from strict gonochorism to unisexuality. From sequencing data emerges that in Triops cancriformis (Spanish gonochoric population), in Lepidurus arcticus (two putatively unisexual populations from Iceland) and in Bacillus rossius (gonochoric population from Capalbio) the R2 elements are complete and encode functional proteins, reflecting the general features of this family of transposable elements. On the other hand, R2 from Italian and Austrian populations of T. cancriformis (respectively unisexual and hermaphroditic), Lepidurus lubbocki (two elements within the same Italian population, gonochoric but with unfunctional males) and Bacillus grandii grandii (gonochoric population from Ponte Manghisi) have sequences that encode incomplete or non-functional proteins in which it is possible to recognize only part of the characteristic domains. In Lepidurus couesii (Italian gonochoric populations) different elements were found as in L. lubbocki, and the sequencing is still in progress. Two hypothesis are given to explain the inconsistency of R2/host phylogeny: vertical inheritance of the element followed by extinction/diversification or horizontal transmission. My data support previous study that state the vertical transmission as the most likely explanation; nevertheless horizontal transfer events can’t be excluded. I also studied the element’s activity in Spanish populations of T. cancriformis, in L. lubbocki, in L. arcticus and in gonochoric and parthenogenetic populations of B. rossius. In gonochoric populations of T. cancriformis and B. rossius I found that each individual has its own private set of truncated variants. The situation is the opposite for the remaining hermaphroditic/parthenogenetic species and populations, all individuals sharing – in the so far analyzed samples - the majority of variants. This situation is very interesting, because it isn’t concordant with the Muller’s ratchet theory that hypothesizes the parthenogenetic populations being either devoided of transposable elements or TEs overloaded. My data suggest a possible epigenetic mechanism that can block the retrotransposon activity, and in this way deleterious mutations don’t accumulate.
Resumo:
The research presented in my PhD thesis is part of a wider European project, FishPopTrace, focused on traceability of fish populations and products. My work was aimed at developing and analyzing novel genetic tools for a widely distributed marine fish species, the European hake (Merluccius merluccius), in order to investigate population genetic structure and explore potential applications to traceability scenarios. A total of 395 SNPs (Single Nucleotide Polymorphisms) were discovered from a massive collection of Expressed Sequence Tags, obtained by high-throughput sequencing, and validated on 19 geographic samples from Atlantic and Mediterranean. Genome-scan approaches were applied to identify polymorphisms on genes potentially under divergent selection (outlier SNPs), showing higher genetic differentiation among populations respect to the average observed across loci. Comparative analysis on population structure were carried out on putative neutral and outlier loci at wide (Atlantic and Mediterranean samples) and regional (samples within each basin) spatial scales, to disentangle the effects of demographic and adaptive evolutionary forces on European hake populations genetic structure. Results demonstrated the potential of outlier loci to unveil fine scale genetic structure, possibly identifying locally adapted populations, despite the weak signal showed from putative neutral SNPs. The application of outlier SNPs within the framework of fishery resources management was also explored. A minimum panel of SNP markers showing maximum discriminatory power was selected and applied to a traceability scenario aiming at identifying the basin (and hence the stock) of origin, Atlantic or Mediterranean, of individual fish. This case study illustrates how molecular analytical technologies have operational potential in real-world contexts, and more specifically, potential to support fisheries control and enforcement and fish and fish product traceability.
Resumo:
This research deals with the deepening and use of an environmental accounting matrix in Emilia-Romagna, RAMEA air emissions (regional NAMEA), carried out by the Regional Environment Agency (Arpa) in an European project. After a depiction of the international context regarding the widespread needing to integrate economic indicators and go beyond conventional reporting system, this study explains the structure, update and development of the tool. The overall aim is to outline the matrix for environmental assessments of regional plans, draw up sustainable reports and monitor effects of regional policies in a sustainable development perspective. The work focused on an application of a Shift-Share model, on the integration with eco-taxes, industrial waste production, energy consumptions, on applications of the extended RAMEA as a policy tool, following Eurostat guidelines. The common thread is the eco-efficiency (economic-environmental efficiency) index. The first part, in English, treats the methodology used to build a more complete tool; in the second part RAMEA has been applied on two regional case studies, in Italian, to support decision makers regarding Strategic Environmental Assessments’ processes (2001/42/EC). The aim is to support an evidence-based policy making by integrating sustainable development concerns at all levels. The first case study regards integrated environmental-economic analyses in support to the SEA of the Regional Waste management plan. For the industrial waste production an extended and updated RAMEA has been developed as a useful policy tool, to help in analysing and monitoring the state of environmental-economic performances. The second case study deals with the environmental report for the SEA of the Regional Program concerning productive activities. RAMEA has been applied aiming to an integrated environmental-economic analysis of the context, to investigate the performances of the regional production chains and to depict and monitor the area where the program should be carried out, from an integrated environmental-economic perspective.
Resumo:
Investigating stock identity of marine species in a multidisciplinary holistic approach can reveal patterns of complex spatial population structure and signatures of potential local adaptation. The population structure of common sole (Solea solea) in the Mediterranean Sea was delineated using genomic and otolith data, including single nucleotide polymorphisms (SNPs) markers and otolith data. SNPs were correlated with environmental and spatial variables to evaluate the impact of these features on the actual genetic population structure. Integrated holistic approach was applied to combine the tracers with different spatio-temporal scales. SNPs data was also used to illustrate the population structure of European hake (Merluccius merluccius) within the Alboran Sea, extending into the neighboring Mediterranean Sea and Atlantic Ocean. The aim was to identify patterns of neutral and potential adaptive genetic variation by applying seascape genomic framework. Results from both genetic and otolith data suggested significant divergence among putative populations of common sole, confirming a clear separation between Western, Adriatic Sea and Eastern Mediterranean Sea. Evidence of fine-scale population structure in the Western Mediterranean Sea was observed at outlier loci level and in the Adriatic. Our study not only indicates that separation among Mediterranean sole population is led primarily by neutral processes, but it also suggests the presence of local adaptation influenced by environmental and spatial factors. The holistic approach by considering the spatio-temporal scales of variation confirmed that the same pattern of separation between these geographical sites is currently occurring and has occurred for many generations. Results showed the occurrence of population structure in Merluccius merluccius by detecting westward–eastward differentiation among populations and distinct subgroups at a fine geographical scale using outlier SNPs. These results enhance the knowledge of the population structure of commercially relevant species to support the application of spatial stock assessment models, including a redefinition of fishery management units.
Resumo:
The study of the spectroscopic phenomena in organic solids, in combination with other techniques, is an effective tool for the understanding of the structural properties of materials based on these compounds. This Ph.D. work was dedicated to the spectroscopic investigation of some relevant processes occurring in organic molecular crystals, with the goal of expanding the knowledge on the relationship between structure, dynamics and photoreactivity of these systems. Vibrational spectroscopy has been the technique of choice, always in combination with X-ray diffraction structural studies and often the support of computational methods. The vibrational study of the molecular solid state reaches its full potential when it includes the low-wavenumber region of the lattice-phonon modes, which probe the weak intermolecular interactions and are the fingerprints of the lattice itself. Microscopy is an invaluable addition in the investigation of processes that take place in the micro-meter scale of the crystal micro-domains. In chemical and phase transitions, as well as in polymorph screening and identification, the combination of Raman microscopy and lattice-phonon detection has provided useful information. Research on the fascinating class of single-crystal-to-single-crystal photoreactions, has shown how the homogeneous mechanism of these transformations can be identified by lattice-phonon microscopy, in agreement with the continuous evolution of their XRD patterns. On describing the behavior of the photodimerization mechanism of vitamin K3, the focus was instead on the influence of its polymorphism in governing the product isomerism. Polymorphism is the additional degree of freedom of molecular functional materials, and by advancing in its control and properties, functionalities can be promoted for useful applications. Its investigation focused on thin-film phases, widely employed in organic electronics. The ambiguities in phase identification often emerging by other experimental methods were successfully solved by vibrational measurements.
Resumo:
The evolution of modern and increasingly sensitive image sensors, the increasingly compact design of the cameras, and the recent emergence of low-cost cameras allowed the Underwater Photogrammetry to become an infallible and irreplaceable technique used to estimate the structure of the seabed with high accuracy. Within this context, the main topic of this work is the Underwater Photogrammetry from a geomatic point of view and all the issues associated with its implementation, in particular with the support of Unmanned Underwater Vehicles. Questions such as: how does the technique work, what is needed to deal with a proper survey, what tools are available to apply this technique, and how to resolve uncertainties in measurement will be the subject of this thesis. The study conducted can be divided into two major parts: one devoted to several ad-hoc surveys and tests, thus a practical part, another supported by the bibliographical research. However the main contributions are related to the experimental section, in which two practical case studies are carried out in order to improve the quality of the underwater survey of some calibration platforms. The results obtained from these two experiments showed that, the refractive effects due to water and underwater housing can be compensated by the distortion coefficients in the camera model, but if the aim is to achieve high accuracy then a model that takes into account the configuration of the underwater housing, based on ray tracing, must also be coupled. The major contributions that this work brought are: an overview of the practical issues when performing surveys exploiting an UUV prototype, a method to reach a reliable accuracy in the 3D reconstructions without the use of an underwater local geodetic network, a guide for who addresses underwater photogrammetry topics for the first time, and the use of open-source environments.