4 resultados para supervisory control

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid vehicles (HV), comprising a conventional ICE-based powertrain and a secondary energy source, to be converted into mechanical power as well, represent a well-established alternative to substantially reduce both fuel consumption and tailpipe emissions of passenger cars. Several HV architectures are either being studied or already available on market, e.g. Mechanical, Electric, Hydraulic and Pneumatic Hybrid Vehicles. Among the others, Electric (HEV) and Mechanical (HSF-HV) parallel Hybrid configurations are examined throughout this Thesis. To fully exploit the HVs potential, an optimal choice of the hybrid components to be installed must be properly designed, while an effective Supervisory Control must be adopted to coordinate the way the different power sources are managed and how they interact. Real-time controllers can be derived starting from the obtained optimal benchmark results. However, the application of these powerful instruments require a simplified and yet reliable and accurate model of the hybrid vehicle system. This can be a complex task, especially when the complexity of the system grows, i.e. a HSF-HV system assessed in this Thesis. The first task of the following dissertation is to establish the optimal modeling approach for an innovative and promising mechanical hybrid vehicle architecture. It will be shown how the chosen modeling paradigm can affect the goodness and the amount of computational effort of the solution, using an optimization technique based on Dynamic Programming. The second goal concerns the control of pollutant emissions in a parallel Diesel-HEV. The emissions level obtained under real world driving conditions is substantially higher than the usual result obtained in a homologation cycle. For this reason, an on-line control strategy capable of guaranteeing the respect of the desired emissions level, while minimizing fuel consumption and avoiding excessive battery depletion is the target of the corresponding section of the Thesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent statistics have demonstrated that two of the most important causes of failures of the UAVs (Uninhabited Aerial Vehicle) missions are related to the low level of decisional autonomy of vehicles and to the man machine interface. Therefore, a relevant issue is to design a display/controls architecture which allows the efficient interaction between the operator and the remote vehicle and to develop a level of automation which allows the vehicle the decision about change in mission. The research presented in this paper focuses on a modular man-machine interface simulator for the UAV control, which simulates UAV missions, developed to experiment solution to this problem. The main components of the simulator are an advanced interface and a block defined automation, which comprehend an algorithm that implements the level of automation of the system. The simulator has been designed and developed following a user-centred design approach in order to take into account the operator’s needs in the communication with the vehicle. The level of automation has been developed following the supervisory control theory which says that the human became a supervisor who sends high level commands, such as part of mission, target, constraints, in then-rule, while the vehicle receives, comprehends and translates such commands into detailed action such as routes or action on the control system. In order to allow the vehicle to calculate and recalculate the safe and efficient route, in term of distance, time and fuel a 3D planning algorithm has been developed. It is based on considering UASs representative of real world systems as objects moving in a virtual environment (terrain, obstacles, and no fly zones) which replicates the airspace. Original obstacle avoidance strategies have been conceived in order to generate mission planes which are consistent with flight rules and with the vehicle performance constraints. The interface is based on a touch screen, used to send high level commands to the vehicle, and a 3D Virtual Display which provides a stereoscopic and augmented visualization of the complex scenario in which the vehicle operates. Furthermore, it is provided with an audio feedback message generator. Simulation tests have been conducted with pilot trainers to evaluate the reliability of the algorithm and the effectiveness and efficiency of the interface in supporting the operator in the supervision of an UAV mission. Results have revealed that the planning algorithm calculate very efficient routes in few seconds, an adequate level of workload is required to command the vehicle and that the 3D based interface provides the operator with a good sense of presence and enhances his awareness of the mission scenario and of the vehicle under his control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of this work was to investigate the impact of different hybridization concepts and levels of hybridization on fuel economy of a standard road vehicle where both conventional and non-conventional hybrid architectures are treated exactly in the same way from the point of view of overall energy flow optimization. Hybrid component models were developed and presented in detail as well as the simulations results mainly for NEDC cycle. The analysis was performed on four different parallel hybrid powertrain concepts: Hybrid Electric Vehicle (HEV), High Speed Flywheel Hybrid Vehicle (HSF-HV), Hydraulic Hybrid Vehicle (HHV) and Pneumatic Hybrid Vehicle (PHV). In order to perform equitable analysis of different hybrid systems, comparison was performed also on the basis of the same usable system energy storage capacity (i.e. 625kJ for HEV, HSF and the HHV) but in the case of pneumatic hybrid systems maximal storage capacity was limited by the size of the systems in order to comply with the packaging requirements of the vehicle. The simulations were performed within the IAV Gmbh - VeLoDyn software simulator based on Matlab / Simulink software package. Advanced cycle independent control strategy (ECMS) was implemented into the hybrid supervisory control unit in order to solve power management problem for all hybrid powertrain solutions. In order to maintain State of Charge within desired boundaries during different cycles and to facilitate easy implementation and recalibration of the control strategy for very different hybrid systems, Charge Sustaining Algorithm was added into the ECMS framework. Also, a Variable Shift Pattern VSP-ECMS algorithm was proposed as an extension of ECMS capabilities so as to include gear selection into the determination of minimal (energy) cost function of the hybrid system. Further, cycle-based energetic analysis was performed in all the simulated cases, and the results have been reported in the corresponding chapters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.