7 resultados para submarine volcanism
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The Thrace Basin is the largest and thickest Tertiary sedimentary basin of the eastern Balkans region and constitutes an important hydrocarbon province. It is located between the Rhodope-Strandja Massif to the north and west, the Marmara Sea and Biga Peninsula to the south, and the Black Sea to the est. It consists of a complex system of depocenters and uplifts with very articulate paleotopography indicated by abrupt lateral facies variations. Its southeastern margin is widely deformed by the Ganos Fault, a segment of the North Anatolian strike-slip fault system . Most of the Thrace Basin fill ranges from the Eocene to the Late Oligocene. Maximum total thickness, including the Neogene-Quaternary succession, reaches 9.000 meters in a few narrow depocenters. This sedimentary succession consists mainly of basin plain turbiditic deposits with a significant volcaniclastic component which evolves upwards to shelf deposits and continental facies, with deltaic bodies prograding towards the basin center in the Oligocene. This work deals with the provenance of Eocene-Oligocene clastic sediments of the southern and western part of Thrace Basin in Turkey and Greece. Sandstone compositional data (78 gross composition analyses and 40 heavy minerals analyses) were used to understand the change in detrital modes which reflects the provenance and geodinamic evolution of the basin. Samples were collected at six localities, which are from west to est: Gökçeada, Gallipoli and South-Ganos (south of Ganos Fault), Alexandroupolis, Korudağ and North-Ganos (north of Ganos Fault). Petrologic (framework composition and heavy-mineral analyses) and stratigraphic-sedimentologic data, (analysis of sedimentologic facies associations along representative stratigraphic sections, paleocurrents) allowed discrimination of six petrofacies; for each petrofacies the sediment dispersal system was delineated. The Thrace Basin fill is made mainly of lithic arkoses and arkosic litharenites with variable amount of low-grade metamorphic lithics (also ophiolitic), neovolcanic lithics, and carbonate grains (mainly extrabasinal). Picotite is the most widespread heavy mineral in all petrofacies. Petrological data on analyzed successions show a complex sediment dispersal pattern and evolution of the basin, indicating one principal detrital input from a source area located to the south, along both the İzmir-Ankara and Intra-Pontide suture lines, and a possible secondary source area, represented by the Rhodope Massif to the west. A significant portion of the Thrace Basin sediments in the study area were derived from ophiolitic source rocks and from their oceanic cover, whereas epimetamorphic detrital components came from a low-grade crystalline basement. An important penecontemporaneous volcanic component is widespread in late Eocene-Oligocene times, indicating widespread post-collisional (collapse?) volcanism following the closure of the Vardar ocean. Large-scale sediment mass wasting from south to north along the southern margin of the Thrace Basin is indicated (i) in late Eocene time by large olistoliths of ophiolites and penecontemporaneous carbonates, and (ii) in the mid-Oligocene by large volcaniclastic olistoliths. The late Oligocene paleogeographic scenario was characterized by large deltaic bodies prograding northward (Osmancik Formation). This clearly indicates that the southern margin of the basin acted as a major sediment source area throughout its Eocene-Oligocene history. Another major sediment source area is represented by the Rhodope Massif, in particolar the Circum-Rhodopic belt, especially for plutonic and metamorphic rocks. Considering preexisting data on the petrologic composition of Thrace Basin, silicilastic sediments in Greece and Bulgaria (Caracciolo, 2009), a Rhodopian provenance could be considered mostly for areas of the Thrace Basin outside our study area, particularly in the northern-central portions of the basin. In summary, the most important source area for the sediment of Thrace Basin in the study area was represented by the exhumed subduction-accretion complex along the southern margin of the basin (Biga Peninsula and western-central Marmara Sea region). Most measured paleocurrent indicators show an eastward paleoflow but this is most likely the result of gravity flow deflection. This is possible considered a strong control due to the east-west-trending synsedimentary transcurrent faults which cuts the Thrace Basin, generating a series of depocenters and uplifts which deeply influenced sediment dispersal and the areal distribution of paleoenvironments. The Thrace Basin was long interpreted as a forearc basin between a magmatic arc to the north and a subduction-accretion complex to the south, developed in a context of northward subduction. This interpretation was challenged by more recent data emphasizing the lack of a coeval magmatic arc in the north and the interpretation of the chaotic deposit which outcrop south of Ganos Fault as olistoliths and large submarine slumps, derived from the erosion and sedimentary reworking of an older mélange unit located to the south (not as tectonic mélange formed in an accretionary prism). The present study corroborates instead the hypothesis of a post-collisional origin of the Thrace Basin, due to a phase of orogenic collapse, which generated a series of mid-Eocene depocenters all along the İzmir-Ankara suture (following closure of the Vardar-İzmir-Ankara ocean and the ensuing collision); then the slab roll-back of the remnant Pindos ocean played an important role in enhancing subsidence and creating additional accommodation space for sediment deposition.
Resumo:
Extensive mass transport deposits and multiple slide scars testify widespread and recurrent submarine sediment failures occurring during the late Quaternary on the SW-Adriatic and SE-Sicilian margins. These mass movements and their consequences contributed to shape the continental slopes and fill the basins with characteristic signatures. Geomorphological, seismo-stratigraphic, sedimentological and biostratigraphic data provide clues to: 1) define distinct failure mechanisms investigating on factors that determine dissimilar organization of coeval displaced masses, 2) reconstruct successive phases of failure stressing on the same location where slide scars crosscut and mass-transport deposits overlap, 3) analyze regional setting and indicate the most suitable place where to calculate mass wasting frequency. Discussions on the role of fluid flow, currents activity and tectonic deformation determine a wider view on the construction of the studied continental margins.
Resumo:
In the last decade the interest for submarine instability grew up, driven by the increasing exploitation of natural resources (primary hydrocarbons), the emplacement of bottom-lying structures (cables and pipelines) and by the development of coastal areas, whose infrastructures increasingly protrude to the sea. The great interest for this topic promoted a number of international projects such as: STEAM (Sediment Transport on European Atlantic Margins, 93-96), ENAM II (European North Atlantic Margin, 96-99), GITEC (Genesis and Impact of Tsunamis on the European Coast 92-95), STRATAFORM (STRATA FORmation on Margins, 95-01), Seabed Slope Process in Deep Water Continental Margin (Northwest Gulf of Mexico, 96-04), COSTA (Continental slope Stability, 00-05), EUROMARGINS (Slope Stability on Europe’s Passive Continental Margin), SPACOMA (04-07), EUROSTRATAFORM (European Margin Strata Formation), NGI's internal project SIP-8 (Offshore Geohazards), IGCP-511: Submarine Mass Movements and Their Consequences (05-09) and projects indirectly related to instability processes, such as TRANSFER (Tsunami Risk ANd Strategies For the European region, 06-09) or NEAREST (integrated observations from NEAR shore sourcES of Tsunamis: towards an early warning system, 06-09). In Italy, apart from a national project realized within the activities of the National Group of Volcanology during the framework 2000-2003 “Conoscenza delle parti sommerse dei vulcani italiani e valutazione del potenziale rischio vulcanico”, the study of submarine mass-movement has been underestimated until the occurrence of the landslide-tsunami events that affected Stromboli on December 30, 2002. This event made the Italian Institutions and the scientific community more aware of the hazard related to submarine landslides, mainly in light of the growing anthropization of coastal sectors, that increases the vulnerability of these areas to the consequences of such processes. In this regard, two important national projects have been recently funded in order to study coastal instabilities (PRIN 24, 06-08) and to map the main submarine hazard features on continental shelves and upper slopes around the most part of Italian coast (MaGIC Project). The study realized in this Thesis is addressed to the understanding of these processes, with particular reference to Stromboli submerged flanks. These latter represent a natural laboratory in this regard, as several kind of instability phenomena are present on the submerged flanks, affecting about 90% of the entire submerged areal and often (strongly) influencing the morphological evolution of subaerial slopes, as witnessed by the event occurred on 30 December 2002. Furthermore, each phenomenon is characterized by different pre-failure, failure and post-failure mechanisms, ranging from rock-falls, to turbidity currents up to catastrophic sector collapses. The Thesis is divided into three introductive chapters, regarding a brief review of submarine instability phenomena and related hazard (cap. 1), a “bird’s-eye” view on methodologies and available dataset (cap. 2) and a short introduction on the evolution and the morpho-structural setting of the Stromboli edifice (cap. 3). This latter seems to play a major role in the development of largescale sector collapses at Stromboli, as they occurred perpendicular to the orientation of the main volcanic rift axis (oriented in NE-SW direction). The characterization of these events and their relationships with successive erosive-depositional processes represents the main focus of cap.4 (Offshore evidence of large-scale lateral collapses on the eastern flank of Stromboli, Italy, due to structurally-controlled, bilateral flank instability) and cap. 5 (Lateral collapses and active sedimentary processes on the North-western flank of Stromboli Volcano), represented by articles accepted for publication on international papers (Marine Geology). Moreover, these studies highlight the hazard related to these catastrophic events; several calamities (with more than 40000 casualties only in the last two century) have been, in fact, the direct or indirect result of landslides affecting volcanic flanks, as observed at Oshima-Oshima (1741) and Unzen Volcano (1792) in Japan (Satake&Kato, 2001; Brantley&Scott, 1993), Krakatau (1883) in Indonesia (Self&Rampino, 1981), Ritter Island (1888), Sissano in Papua New Guinea (Ward& Day, 2003; Johnson, 1987; Tappin et al., 2001) and Mt St. Augustine (1883) in Alaska (Beget& Kienle, 1992). Flank landslide are also recognized as the most important and efficient mass-wasting process on volcanoes, contributing to the development of the edifices by widening their base and to the growth of a volcaniclastic apron at the foot of a volcano; a number of small and medium-scale erosive processes are also responsible for the carving of Stromboli submarine flanks and the transport of debris towards the deeper areas. The characterization of features associated to these processes is the main focus of cap. 6; it is also important to highlight that some small-scale events are able to create damage to coastal areas, as also witnessed by recent events of Gioia Tauro 1978, Nizza, 1979 and Stromboli 2002. The hazard potential related to these phenomena is, in fact, very high, as they commonly occur at higher frequency with respect to large-scale collapses, therefore being more significant in terms of human timescales. In the last chapter (cap. 7), a brief review and discussion of instability processes identified on Stromboli submerged flanks is presented; they are also compared with respect to analogous processes recognized in other submerged areas in order to shed lights on the main factors involved in their development. Finally, some applications of multibeam data to assess the hazard related to these phenomena are also discussed.
Resumo:
Forecasting the time, location, nature, and scale of volcanic eruptions is one of the most urgent aspects of modern applied volcanology. The reliability of probabilistic forecasting procedures is strongly related to the reliability of the input information provided, implying objective criteria for interpreting the historical and monitoring data. For this reason both, detailed analysis of past data and more basic research into the processes of volcanism, are fundamental tasks of a continuous information-gain process; in this way the precursor events of eruptions can be better interpreted in terms of their physical meanings with correlated uncertainties. This should lead to better predictions of the nature of eruptive events. In this work we have studied different problems associated with the long- and short-term eruption forecasting assessment. First, we discuss different approaches for the analysis of the eruptive history of a volcano, most of them generally applied for long-term eruption forecasting purposes; furthermore, we present a model based on the characteristics of a Brownian passage-time process to describe recurrent eruptive activity, and apply it for long-term, time-dependent, eruption forecasting (Chapter 1). Conversely, in an effort to define further monitoring parameters as input data for short-term eruption forecasting in probabilistic models (as for example, the Bayesian Event Tree for eruption forecasting -BET_EF-), we analyze some characteristics of typical seismic activity recorded in active volcanoes; in particular, we use some methodologies that may be applied to analyze long-period (LP) events (Chapter 2) and volcano-tectonic (VT) seismic swarms (Chapter 3); our analysis in general are oriented toward the tracking of phenomena that can provide information about magmatic processes. Finally, we discuss some possible ways to integrate the results presented in Chapters 1 (for long-term EF), 2 and 3 (for short-term EF) in the BET_EF model (Chapter 4).
Resumo:
Iberia Africa plate boundary, cross, roughly W-E, connecting the eastern Atlantic Ocean from Azores triple junction to the Continental margin of Morocco. Relative movement between the two plate change along the boundary, from transtensive near the Azores archipelago, through trascurrent movement in the middle at the Gloria Fracture Zone, to transpressive in the Gulf of Cadiz area. This study presents the results of geophysical and geological analysis on the plate boundary area offshore Gibraltar. The main topic is to clarify the geodynamic evolution of this area from Oligocene to Quaternary. Recent studies have shown that the new plate boundary is represented by a 600 km long set of aligned, dextral trascurrent faults (the SWIM lineaments) connecting the Gloria fault to the Riff orogene. The western termination of these lineaments crosscuts the Gibraltar accretionary prism and seems to reach the Moroccan continental shelf. In the past two years newly acquired bathymetric data collected in the Moroccan offshore permit to enlighten the present position of the eastern portion of the plate boundary, previously thought to be a diffuse plate boundary. The plate boundary evolution, from the onset of compression in the Oligocene to the Late Pliocene activation of trascurrent structures, is not yet well constrained. The review of available seismics lines, gravity and bathymetric data, together with the analysis of new acquired bathymetric and high resolution seismic data offshore Morocco, allows to understand how the deformation acted at lithospheric scale under the compressive regime. Lithospheric folding in the area is suggested, and a new conceptual model is proposed for the propagation of the deformation acting in the brittle crust during this process. Our results show that lithospheric folding, both in oceanic and thinned continental crust, produced large wavelength synclines bounded by short wavelength, top thrust, anticlines. Two of these anticlines are located in the Gulf of Cadiz, and are represented by the Gorringe Ridge and Coral Patch seamounts. Lithospheric folding probably interacted with the Monchique – Madeira hotspot during the 72 Ma to Recent, NNE – SSW transit. Plume related volcanism is for the first time described on top of the Coral Patch seamount, where nine volcanoes are found by means of bathymetric data. 40Ar-39Ar age of 31.4±1.98 Ma are measured from one rock sample of one of these volcanoes. Analysis on biogenic samples show how the Coral Patch act as a starved offshore seamount since the Chattian. We proposed that compression stress formed lithospheric scale structures playing as a reserved lane for the upwelling of mantle material during the hotspot transit. The interaction between lithospheric folding and the hotspot emplacement can be also responsible for the irregularly spacing, and anomalous alignments, of individual islands and seamounts belonging to the Monchique - Madeira hotspot.
Resumo:
In this study new tomographic models of Colombia were calculated. I used the seismicity recorded by the Colombian seismic network during the period 2006-2009. In this time period, the improvement of the seismic network yields more stable hypocentral results with respect to older data set and allows to compute new 3D Vp and Vp/Vs models. The final dataset consists of 10813 P- and 8614 S-arrival times associated to 1405 earthquakes. Tests with synthetic data and resolution analysis indicate that velocity models are well constrained in central, western and southwestern Colombia to a depth of 160 km; the resolution is poor in the northern Colombia and close to Venezuela due to a lack of seismic stations and seismicity. The tomographic models and the relocated seismicity indicate the existence of E-SE subducting Nazca lithosphere beneath central and southern Colombia. The North-South changes in Wadati-Benioff zone, Vp & Vp/Vs pattern and volcanism, show that the downgoing plate is segmented by slab tears E-W directed, suggesting the presence of three sectors. Earthquakes in the northernmost sector represent most of the Colombian seimicity and concentrated on 100-170 km depth interval, beneath the Eastern Cordillera. Here a massive dehydration is inferred, resulting from a delay in the eclogitization of a thickened oceanic crust in a flat-subduction geometry. In this sector a cluster of intermediate-depth seismicity (Bucaramanga Nest) is present beneath the elbow of the Eastern Cordillera, interpreted as the result of massive and highly localized dehydration phenomenon caused by a hyper-hydrous oceanic crust. The central and southern sectors, although different in Vp pattern show, conversely, a continuous, steep and more homogeneous Wadati-Benioff zone with overlying volcanic areas. Here a "normalthickened" oceanic crust is inferred, allowing for a gradual and continuous metamorphic reactions to take place with depth, enabling the fluid migration towards the mantle wedge.
Resumo:
Oceanic islands can be divided, according to their origin, in volcanic and tectonic. Volcanic islands are due to excess volcanism. Tectonic islands are mainly formed due to vertical tectonic motions of blocks of oceanic lithosphere along transverse ridges flanking transform faults at slow and ultraslow mid-ocean ridges. Vertical tectonic motions are due to a reorganization of the geometry of the transform plate boundary, with the transition from a transcurrent tectonics to a transtensive and/or transpressive tectonics, with the formation of the transverse ridges. Tectonic islands can be located also at the ridge–transform intersection: in this case the uplift is due by the movement of the long-lived detachment faults located along the flanks of the mid-ocean ridges. The "Vema" paleoisland (equatorial Atlantic) is at the summit of the southern transverse ridge of the Vema transform. It is now 450 m bsl and it is capped by a carbonate platform 500 m-thick, dated by 87Sr/86Sr at 10 Ma. Three tectonic paleoislands are on the summit of the transverse ridge flanking the Romanche megatrasform (equatorial Atlantic). They are now about 1,000 m bsl and they are formed by 300 m-thick carbonate platforms dated by 87Sr/86Sr, between 11 and 6 Ma. The tectonic paleoisland “Atlantis Bank" is located in the South-Western Indian Ridge, along the Atlantis II transform, and it is today 700 m bsl. The only modern example of oceanic tectonics island is the St. Paul Rocks (equatorial Atlantic), located along the St. Paul transform. This archipelago is the top of a peridotitic massif that it is now a left overstep undergoing transpression. Oceanic volcanic islands are characterized by rapid growth and subsequent thermal subsidence and drowning; in contrast, oceanic tectonic islands may have one or more stages of emersion related to vertical tectonic events along the large oceanic fracture zones.