8 resultados para string theory and cosmology
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The present thesis is divided into two main research areas: Classical Cosmology and (Loop) Quantum Gravity. The first part concerns cosmological models with one phantom and one scalar field, that provide the `super-accelerated' scenario not excluded by observations, thus exploring alternatives to the standard LambdaCDM scenario. The second part concerns the spinfoam approach to (Loop) Quantum Gravity, which is an attempt to provide a `sum-over-histories' formulation of gravitational quantum transition amplitudes. The research here presented focuses on the face amplitude of a generic spinfoam model for Quantum Gravity.
Resumo:
The goal of this thesis is to analyze the possibility of using early-type galaxies to place evolutionary and cosmological constraints, by both disentangling what is the main driver of ETGs evolution between mass and environment, and developing a technique to constrain H(z) and the cosmological parameters studying the ETGs age-redshift relation. The (U-V) rest-frame color distribution is studied as a function of mass and environment for two sample of ETGs up to z=1, extracted from the zCOSMOS survey with a new selection criterion. The color distributions and the slopes of the color-mass and color-environment relations are studied, finding a strong dependence on mass and a minor dependence on environment. The spectral analysis performed on the D4000 and Hδ features gives results validating the previous analysis. The main driver of galaxy evolution is found to be the galaxy mass, the environment playing a subdominant but non negligible role. The age distribution of ETGs is also analyzed as a function of mass, providing strong evidences supporting a downsizing scenario. The possibility of setting cosmological constraints studying the age-redshift relation is studied, discussing the relative degeneracies and model dependencies. A new approach is developed, aiming to minimize the impact of systematics on the “cosmic chronometer” method. Analyzing theoretical models, it is demonstrated that the D4000 is a feature correlated almost linearly with age at fixed metallicity, depending only minorly on the models assumed or on the SFH chosen. The analysis of a SDSS sample of ETGs shows that it is possible to use the differential D4000 evolution of the galaxies to set constraints to cosmological parameters in an almost model-independent way. Values of the Hubble constant and of the dark energy EoS parameter are found, which are not only fully compatible, but also with a comparable error budget with the latest results.
Resumo:
This thesis examines the literature on local home bias, i.e. investor preference towards geographically nearby stocks, and investigates the role of firm’s visibility, profitability, and opacity in explaining such behavior. While firm’s visibility is expected to proxy for the behavioral root originating such a preference, firm’s profitability and opacity are expected to capture the informational one. I find that less visible, and more profitable and opaque firms, conditionally to the demand, benefit from being headquartered in regions characterized by a scarcity of listed firms (local supply of stocks). Specifically, research estimates suggest that firms headquartered in regions with a poor supply of stocks would be worth i) 11 percent more if non-visible, non-profitable and non-opaque; ii) 16 percent more if profitable; and iii) 28 percent more if both profitable and opaque. Overall, as these features are able to explain most, albeit not all, of the local home bias effect, I reasonably argue and then assess that most of the preference for local is determined by a successful attempt to exploit local information advantage (60 percent), while the rest is determined by a mere (irrational) feeling of familiarity with the local firm (40 percent). Several and significant methodological, theoretical, and practical implications come out.
Resumo:
The dissertation is structured in three parts. The first part compares US and EU agricultural policies since the end of WWII. There is not enough evidence for claiming that agricultural support has a negative impact on obesity trends. I discuss the possibility of an exchange in best practices to fight obesity. There are relevant economic, societal and legal differences between the US and the EU. However, partnerships against obesity are welcomed. The second part presents a socio-ecological model of the determinants of obesity. I employ an interdisciplinary model because it captures the simultaneous influence of several variables. Obesity is an interaction of pre-birth, primary and secondary socialization factors. To test the significance of each factor, I use data from the National Longitudinal Survey of Adolescent Health. I compare the average body mass index across different populations. Differences in means are statistically significant. In the last part I use the National Survey of Children Health. I analyze the effect that family characteristics, built environment, cultural norms and individual factors have on the body mass index (BMI). I use Ordered Probit models and I calculate the marginal effects. I use State and ethnicity fixed effects to control for unobserved heterogeneity. I find that southern US States tend have on average a higher probability of being obese. On the ethnicity side, White Americans have a lower BMI respect to Black Americans, Hispanics and American Indians Native Islanders; being Asian is associated with a lower probability of being obese. In neighborhoods where trust level and safety perception are higher, children are less overweight and obese. Similar results are shown for higher level of parental income and education. Breastfeeding has a negative impact. Higher values of measures of behavioral disorders have a positive and significant impact on obesity, as predicted by the theory.
Resumo:
In this thesis we will investigate some properties of one-dimensional quantum systems. From a theoretical point of view quantum models in one dimension are particularly interesting because they are strongly interacting, since particles cannot avoid each other in their motion, and you we can never ignore collisions. Yet, integrable models often generate new and non-trivial solutions, which could not be found perturbatively. In this dissertation we shall focus on two important aspects of integrable one- dimensional models: Their entanglement properties at equilibrium and their dynamical correlators after a quantum quench. The first part of the thesis will be therefore devoted to the study of the entanglement entropy in one- dimensional integrable systems, with a special focus on the XYZ spin-1/2 chain, which, in addition to being integrable, is also an interacting model. We will derive its Renyi entropies in the thermodynamic limit and its behaviour in different phases and for different values of the mass-gap will be analysed. In the second part of the thesis we will instead study the dynamics of correlators after a quantum quench , which represent a powerful tool to measure how perturbations and signals propagate through a quantum chain. The emphasis will be on the Transverse Field Ising Chain and the O(3) non-linear sigma model, which will be both studied by means of a semi-classical approach. Moreover in the last chapter we will demonstrate a general result about the dynamics of correlation functions of local observables after a quantum quench in integrable systems. In particular we will show that if there are not long-range interactions in the final Hamiltonian, then the dynamics of the model (non equal- time correlations) is described by the same statistical ensemble that describes its statical properties (equal-time correlations).
Resumo:
In this thesis we discuss a representation of quantum mechanics and quantum and statistical field theory based on a functional renormalization flow equation for the one-particle-irreducible average effective action, and we employ it to get information on some specific systems.
Resumo:
In this thesis we provide a characterization of probabilistic computation in itself, from a recursion-theoretical perspective, without reducing it to deterministic computation. More specifically, we show that probabilistic computable functions, i.e., those functions which are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural generalization of Kleene's partial recursive functions which includes, among initial functions, one that returns identity or successor with probability 1/2. We then prove the equi-expressivity of the obtained algebra and the class of functions computed by PTMs. In the the second part of the thesis we investigate the relations existing between our recursion-theoretical framework and sub-recursive classes, in the spirit of Implicit Computational Complexity. More precisely, endowing predicative recurrence with a random base function is proved to lead to a characterization of polynomial-time computable probabilistic functions.