3 resultados para stochastic simulations
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.
Resumo:
During the last few years, a great deal of interest has risen concerning the applications of stochastic methods to several biochemical and biological phenomena. Phenomena like gene expression, cellular memory, bet-hedging strategy in bacterial growth and many others, cannot be described by continuous stochastic models due to their intrinsic discreteness and randomness. In this thesis I have used the Chemical Master Equation (CME) technique to modelize some feedback cycles and analyzing their properties, including experimental data. In the first part of this work, the effect of stochastic stability is discussed on a toy model of the genetic switch that triggers the cellular division, which malfunctioning is known to be one of the hallmarks of cancer. The second system I have worked on is the so-called futile cycle, a closed cycle of two enzymatic reactions that adds and removes a chemical compound, called phosphate group, to a specific substrate. I have thus investigated how adding noise to the enzyme (that is usually in the order of few hundred molecules) modifies the probability of observing a specific number of phosphorylated substrate molecules, and confirmed theoretical predictions with numerical simulations. In the third part the results of the study of a chain of multiple phosphorylation-dephosphorylation cycles will be presented. We will discuss an approximation method for the exact solution in the bidimensional case and the relationship that this method has with the thermodynamic properties of the system, which is an open system far from equilibrium.In the last section the agreement between the theoretical prediction of the total protein quantity in a mouse cells population and the observed quantity will be shown, measured via fluorescence microscopy.
Resumo:
In the last two decades, authors have begun to expand classical stochastic frontier (SF) models in order to include also some spatial components. Indeed, firms tend to concentrate in clusters, taking advantage of positive agglomeration externalities due to cooperation, shared ideas and emulation, resulting in increased productivity levels. Until now scholars have introduced spatial dependence into SF models following two different paths: evaluating global and local spatial spillover effects related to the frontier or considering spatial cross-sectional correlation in the inefficiency and/or in the error term. In this thesis, we extend the current literature on spatial SF models introducing two novel specifications for panel data. First, besides considering productivity and input spillovers, we introduce the possibility to evaluate the specific spatial effects arising from each inefficiency determinant through their spatial lags aiming to capture also knowledge spillovers. Second, we develop a very comprehensive spatial SF model that includes both frontier and error-based spillovers in order to consider four different sources of spatial dependence (i.e. productivity and input spillovers related to the frontier function and behavioural and environmental correlation associated with the two error terms). Finally, we test the finite sample properties of the two proposed spatial SF models through simulations, and we provide two empirical applications to the Italian accommodation and agricultural sectors. From a practical perspective, policymakers, based on results from these models, can rely on precise, detailed and distinct insights on the spillover effects affecting the productive performance of neighbouring spatial units obtaining interesting and relevant suggestions for policy decisions.