15 resultados para stochastic adding machines
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
During the last few years, a great deal of interest has risen concerning the applications of stochastic methods to several biochemical and biological phenomena. Phenomena like gene expression, cellular memory, bet-hedging strategy in bacterial growth and many others, cannot be described by continuous stochastic models due to their intrinsic discreteness and randomness. In this thesis I have used the Chemical Master Equation (CME) technique to modelize some feedback cycles and analyzing their properties, including experimental data. In the first part of this work, the effect of stochastic stability is discussed on a toy model of the genetic switch that triggers the cellular division, which malfunctioning is known to be one of the hallmarks of cancer. The second system I have worked on is the so-called futile cycle, a closed cycle of two enzymatic reactions that adds and removes a chemical compound, called phosphate group, to a specific substrate. I have thus investigated how adding noise to the enzyme (that is usually in the order of few hundred molecules) modifies the probability of observing a specific number of phosphorylated substrate molecules, and confirmed theoretical predictions with numerical simulations. In the third part the results of the study of a chain of multiple phosphorylation-dephosphorylation cycles will be presented. We will discuss an approximation method for the exact solution in the bidimensional case and the relationship that this method has with the thermodynamic properties of the system, which is an open system far from equilibrium.In the last section the agreement between the theoretical prediction of the total protein quantity in a mouse cells population and the observed quantity will be shown, measured via fluorescence microscopy.
Resumo:
This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.
Resumo:
Machines with moving parts give rise to vibrations and consequently noise. The setting up and the status of each machine yield to a peculiar vibration signature. Therefore, a change in the vibration signature, due to a change in the machine state, can be used to detect incipient defects before they become critical. This is the goal of condition monitoring, in which the informations obtained from a machine signature are used in order to detect faults at an early stage. There are a large number of signal processing techniques that can be used in order to extract interesting information from a measured vibration signal. This study seeks to detect rotating machine defects using a range of techniques including synchronous time averaging, Hilbert transform-based demodulation, continuous wavelet transform, Wigner-Ville distribution and spectral correlation density function. The detection and the diagnostic capability of these techniques are discussed and compared on the basis of experimental results concerning gear tooth faults, i.e. fatigue crack at the tooth root and tooth spalls of different sizes, as well as assembly faults in diesel engine. Moreover, the sensitivity to fault severity is assessed by the application of these signal processing techniques to gear tooth faults of different sizes.
Resumo:
In biological world, life of cells is guaranteed by their ability to sense and to respond to a large variety of internal and external stimuli. In particular, excitable cells, like muscle or nerve cells, produce quick depolarizations in response to electrical, mechanical or chemical stimuli: this means that they can change their internal potential through a quick exchange of ions between cytoplasm and the external environment. This can be done thanks to the presence of ion channels, proteins that span the lipid bilayer and act like switches, allowing ionic current to flow opening and shutting in a stochastic way. For a particular class of ion channels, ligand-gated ion channels, the gating processes is strongly influenced by binding between receptive sites located on the channel surface and specific target molecules. These channels, inserted in biomimetic membranes and in presence of a proper electronic system for acquiring and elaborating the electrical signal, could give us the possibility of detecting and quantifying concentrations of specific molecules in complex mixtures from ionic currents across the membrane; in this thesis work, this possibility is investigated. In particular, it reports a description of experiments focused on the creation and the characterization of artificial lipid membranes, the reconstitution of ion channels and the analysis of their electrical and statistical properties. Moreover, after a chapter about the basis of the modelling of the kinetic behaviour of ligand gated ion channels, a possible approach for the estimation of the target molecule concentration, based on a statistical analysis of the ion channel open probability, is proposed. The fifth chapter contains a description of the kinetic characterisation of a ligand gated ion channel: the homomeric α2 isoform of the glycine receptor. It involved both experimental acquisitions and signal analysis. The last chapter represents the conclusions of this thesis, with some remark on the effective performance that may be achieved using ligand gated ion channels as sensing elements.
Resumo:
Technological progress has been enabling companies to add disparate features to their existing products. This research investigates the effect of adding more features on consumers’ evaluation of the product, by examining in particular the role of the congruity of the features added with the base product as a variable the moderates the effect of increasing the number of features. Grounding on schema-congruity theory, I propose that the cognitive elaboration associated with the product congruity of the features added explains consumers’ evaluation as the number of new features increases. In particular, it is shown that consumers perceive a benefit from increasing the number of features only when these features are congruent with the product. The underlying mechanisms that explains this finding predicts that when the number of incongruent features increases the cognitive resources necessary to elaborate such incongruities increase and consumers are not willing to spend such resources. However, I further show that when encouraged to consider the new features thoughtfully, consumers do seem able to infer value from increasing the number of moderately incongruent features. Nonetheless, this finding does not apply for those new features that are extremely incongruent with the product. Further evidence for consumers’ ability to resolve the moderate incongruity associated with adding more features is also shown, by studying the moderating role of temporal construal. I propose that consumers perceive an increase in product evaluation as the number of moderately incongruent features increases when consumers consider purchasing the product in the distant future, whereas such an increase is not predicted for the near future scenario. I verify these effect in three experimental studies. Theoretical and managerial implications, and possible avenues of future research are also suggested.
Resumo:
The ever-increasing spread of automation in industry puts the electrical engineer in a central role as a promoter of technological development in a sector such as the use of electricity, which is the basis of all the machinery and productive processes. Moreover the spread of drives for motor control and static converters with structures ever more complex, places the electrical engineer to face new challenges whose solution has as critical elements in the implementation of digital control techniques with the requirements of inexpensiveness and efficiency of the final product. The successfully application of solutions using non-conventional static converters awake an increasing interest in science and industry due to the promising opportunities. However, in the same time, new problems emerge whose solution is still under study and debate in the scientific community During the Ph.D. course several themes have been developed that, while obtaining the recent and growing interest of scientific community, have much space for the development of research activity and for industrial applications. The first area of research is related to the control of three phase induction motors with high dynamic performance and the sensorless control in the high speed range. The management of the operation of induction machine without position or speed sensors awakes interest in the industrial world due to the increased reliability and robustness of this solution combined with a lower cost of production and purchase of this technology compared to the others available in the market. During this dissertation control techniques will be proposed which are able to exploit the total dc link voltage and at the same time capable to exploit the maximum torque capability in whole speed range with good dynamic performance. The proposed solution preserves the simplicity of tuning of the regulators. Furthermore, in order to validate the effectiveness of presented solution, it is assessed in terms of performance and complexity and compared to two other algorithm presented in literature. The feasibility of the proposed algorithm is also tested on induction motor drive fed by a matrix converter. Another important research area is connected to the development of technology for vehicular applications. In this field the dynamic performances and the low power consumption is one of most important goals for an effective algorithm. Towards this direction, a control scheme for induction motor that integrates within a coherent solution some of the features that are commonly required to an electric vehicle drive is presented. The main features of the proposed control scheme are the capability to exploit the maximum torque in the whole speed range, a weak dependence on the motor parameters, a good robustness against the variations of the dc-link voltage and, whenever possible, the maximum efficiency. The second part of this dissertation is dedicated to the multi-phase systems. This technology, in fact, is characterized by a number of issues worthy of investigation that make it competitive with other technologies already on the market. Multiphase systems, allow to redistribute power at a higher number of phases, thus making possible the construction of electronic converters which otherwise would be very difficult to achieve due to the limits of present power electronics. Multiphase drives have an intrinsic reliability given by the possibility that a fault of a phase, caused by the possible failure of a component of the converter, can be solved without inefficiency of the machine or application of a pulsating torque. The control of the magnetic field spatial harmonics in the air-gap with order higher than one allows to reduce torque noise and to obtain high torque density motor and multi-motor applications. In one of the next chapters a control scheme able to increase the motor torque by adding a third harmonic component to the air-gap magnetic field will be presented. Above the base speed the control system reduces the motor flux in such a way to ensure the maximum torque capability. The presented analysis considers the drive constrains and shows how these limits modify the motor performance. The multi-motor applications are described by a well-defined number of multiphase machines, having series connected stator windings, with an opportune permutation of the phases these machines can be independently controlled with a single multi-phase inverter. In this dissertation this solution will be presented and an electric drive consisting of two five-phase PM tubular actuators fed by a single five-phase inverter will be presented. Finally the modulation strategies for a multi-phase inverter will be illustrated. The problem of the space vector modulation of multiphase inverters with an odd number of phases is solved in different way. An algorithmic approach and a look-up table solution will be proposed. The inverter output voltage capability will be investigated, showing that the proposed modulation strategy is able to fully exploit the dc input voltage either in sinusoidal or non-sinusoidal operating conditions. All this aspects are considered in the next chapters. In particular, Chapter 1 summarizes the mathematical model of induction motor. The Chapter 2 is a brief state of art on three-phase inverter. Chapter 3 proposes a stator flux vector control for a three- phase induction machine and compares this solution with two other algorithms presented in literature. Furthermore, in the same chapter, a complete electric drive based on matrix converter is presented. In Chapter 4 a control strategy suitable for electric vehicles is illustrated. Chapter 5 describes the mathematical model of multi-phase induction machines whereas chapter 6 analyzes the multi-phase inverter and its modulation strategies. Chapter 7 discusses the minimization of the power losses in IGBT multi-phase inverters with carrier-based pulse width modulation. In Chapter 8 an extended stator flux vector control for a seven-phase induction motor is presented. Chapter 9 concerns the high torque density applications and in Chapter 10 different fault tolerant control strategies are analyzed. Finally, the last chapter presents a positioning multi-motor drive consisting of two PM tubular five-phase actuators fed by a single five-phase inverter.
Resumo:
This work presents exact, hybrid algorithms for mixed resource Allocation and Scheduling problems; in general terms, those consist into assigning over time finite capacity resources to a set of precedence connected activities. The proposed methods have broad applicability, but are mainly motivated by applications in the field of Embedded System Design. In particular, high-performance embedded computing recently witnessed the shift from single CPU platforms with application-specific accelerators to programmable Multi Processor Systems-on-Chip (MPSoCs). Those allow higher flexibility, real time performance and low energy consumption, but the programmer must be able to effectively exploit the platform parallelism. This raises interest in the development of algorithmic techniques to be embedded in CAD tools; in particular, given a specific application and platform, the objective if to perform optimal allocation of hardware resources and to compute an execution schedule. On this regard, since embedded systems tend to run the same set of applications for their entire lifetime, off-line, exact optimization approaches are particularly appealing. Quite surprisingly, the use of exact algorithms has not been well investigated so far; this is in part motivated by the complexity of integrated allocation and scheduling, setting tough challenges for ``pure'' combinatorial methods. The use of hybrid CP/OR approaches presents the opportunity to exploit mutual advantages of different methods, while compensating for their weaknesses. In this work, we consider in first instance an Allocation and Scheduling problem over the Cell BE processor by Sony, IBM and Toshiba; we propose three different solution methods, leveraging decomposition, cut generation and heuristic guided search. Next, we face Allocation and Scheduling of so-called Conditional Task Graphs, explicitly accounting for branches with outcome not known at design time; we extend the CP scheduling framework to effectively deal with the introduced stochastic elements. Finally, we address Allocation and Scheduling with uncertain, bounded execution times, via conflict based tree search; we introduce a simple and flexible time model to take into account duration variability and provide an efficient conflict detection method. The proposed approaches achieve good results on practical size problem, thus demonstrating the use of exact approaches for system design is feasible. Furthermore, the developed techniques bring significant contributions to combinatorial optimization methods.
Resumo:
La ricerca ha per oggetto la messa a punto e applicazione di un approccio metaprogettuale finalizzato alla definizione di criteri di qualità architettonica e paesaggistica nella progettazione di aziende vitivinicole medio-piccole, che effettuano la trasformazione della materia prima, prevalentemente di propria produzione. L’analisi della filiera vitivinicola, della letteratura scientifica, della normativa di settore, di esempi di “architetture del vino eccellenti” hanno esplicitato come prevalentemente vengano indagate cantine industriali ed aspetti connessi con l'innovazione tecnologica delle attrezzature. Soluzioni costruttive e tecnologiche finalizzate alla qualità architettonica ed ambientale, attuali dinamiche riguardanti il turismo enogastronomico, nuove funzionalità aziendali, problematiche legate alla sostenibilità dell’intervento risultano ancora poco esplorate, specialmente con riferimento a piccole e medie aziende vitivinicole. Assunto a riferimento il territorio ed il sistema costruito del Nuovo Circondario Imolese (areale rappresentativo per vocazione ed espressione produttiva del comparto vitivinicolo emiliano-romagnolo) è stato identificato un campione di aziende con produzioni annue non superiori ai 5000 hl. Le analisi svolte sul campione hanno permesso di determinare: modalità di aggregazione funzionale degli spazi costruiti, relazioni esistenti con il paesaggio, aspetti distributivi e materico-costruttivi, dimensioni di massima dei locali funzionali alla produzione. Il caso studio relativo alla riqualificazione di un’azienda rappresentativa del comparto è stato utilizzato per la messa a punto e sperimentazione di criteri di progettazione guidati da valutazioni relative alle prestazioni energetiche, alla qualità architettonica e alla sostenibilità ambientale, economica e paesaggistica. L'analisi costi-benefici (pur non considerando le ricadute positive in termini di benessere degli occupanti ed il guadagno della collettività in termini di danni collegati all’inquinamento che vengono evitati in architetture progettate per garantire qualità ambientale interna ed efficienza energetica) ha esplicitato il ritorno in pochi anni dell’investimento proposto, nonostante gli ancora elevati costi di materiali di qualità e dei componenti per il corretto controllo climatico delle costruzioni.
Resumo:
Sea-level variability is characterized by multiple interacting factors described in the Fourth Assessment Report (Bindoff et al., 2007) of the Intergovernmental Panel on Climate Change (IPCC) that act over wide spectra of temporal and spatial scales. In Church et al. (2010) sea-level variability and changes are defined as manifestations of climate variability and change. The European Environmental Agency (EEA) defines sea level as one of most important indicators for monitoring climate change, as it integrates the response of different components of the Earths system and is also affected by anthropogenic contributions (EEA, 2011). The balance between the different sea-level contributions represents an important source of uncertainty, involving stochastic processes that are very difficult to describe and understand in detail, to the point that they are defined as an enigma in Munk (2002). Sea-level rate estimates are affected by all these uncertainties, in particular if we look at possible responses to sea-level contributions to future climate. At the regional scale, lateral fluxes also contribute to sea-level variability, adding complexity to sea-level dynamics. The research strategy adopted in this work to approach such an interesting and challenging topic has been to develop an objective methodology to study sea-level variability at different temporal and spatial scales, applicable in each part of the Mediterranean basin in particular, and in the global ocean in general, using all the best calibrated sources of data (for the Mediterranean): in-situ, remote-sensig and numerical models data. The global objective of this work was to achieve a deep understanding of all of the components of the sea-level signal contributing to sea-level variability, tendency and trend and to quantify them.
Resumo:
This work presents a comprehensive methodology for the reduction of analytical or numerical stochastic models characterized by uncertain input parameters or boundary conditions. The technique, based on the Polynomial Chaos Expansion (PCE) theory, represents a versatile solution to solve direct or inverse problems related to propagation of uncertainty. The potentiality of the methodology is assessed investigating different applicative contexts related to groundwater flow and transport scenarios, such as global sensitivity analysis, risk analysis and model calibration. This is achieved by implementing a numerical code, developed in the MATLAB environment, presented here in its main features and tested with literature examples. The procedure has been conceived under flexibility and efficiency criteria in order to ensure its adaptability to different fields of engineering; it has been applied to different case studies related to flow and transport in porous media. Each application is associated with innovative elements such as (i) new analytical formulations describing motion and displacement of non-Newtonian fluids in porous media, (ii) application of global sensitivity analysis to a high-complexity numerical model inspired by a real case of risk of radionuclide migration in the subsurface environment, and (iii) development of a novel sensitivity-based strategy for parameter calibration and experiment design in laboratory scale tracer transport.
Resumo:
A two-dimensional model to analyze the distribution of magnetic fields in the airgap of a PM electrical machines is studied. A numerical algorithm for non-linear magnetic analysis of multiphase surface-mounted PM machines with semi-closed slots is developed, based on the equivalent magnetic circuit method. By using a modular structure geometry, whose the basic element can be duplicated, it allows to design whatever typology of windings distribution. In comparison to a FEA, permits a reduction in computing time and to directly changing the values of the parameters in a user interface, without re-designing the model. Output torque and radial forces acting on the moving part of the machine can be calculated. In addition, an analytical model for radial forces calculation in multiphase bearingless Surface-Mounted Permanent Magnet Synchronous Motors (SPMSM) is presented. It allows to predict amplitude and direction of the force, depending on the values of torque current, of levitation current and of rotor position. It is based on the space vectors method, letting the analysis of the machine also during transients. The calculations are conducted by developing the analytical functions in Fourier series, taking all the possible interactions between stator and rotor mmf harmonic components into account and allowing to analyze the effects of electrical and geometrical quantities of the machine, being parametrized. The model is implemented in the design of a control system for bearingless machines, as an accurate electromagnetic model integrated in a three-dimensional mechanical model, where one end of the motor shaft is constrained to simulate the presence of a mechanical bearing, while the other is free, only supported by the radial forces developed in the interactions between magnetic fields, to realize a bearingless system with three degrees of freedom. The complete model represents the design of the experimental system to be realized in the laboratory.
Resumo:
In the present thesis, a new methodology of diagnosis based on advanced use of time-frequency technique analysis is presented. More precisely, a new fault index that allows tracking individual fault components in a single frequency band is defined. More in detail, a frequency sliding is applied to the signals being analyzed (currents, voltages, vibration signals), so that each single fault frequency component is shifted into a prefixed single frequency band. Then, the discrete Wavelet Transform is applied to the resulting signal to extract the fault signature in the frequency band that has been chosen. Once the state of the machine has been qualitatively diagnosed, a quantitative evaluation of the fault degree is necessary. For this purpose, a fault index based on the energy calculation of approximation and/or detail signals resulting from wavelet decomposition has been introduced to quantify the fault extend. The main advantages of the developed new method over existing Diagnosis techniques are the following: - Capability of monitoring the fault evolution continuously over time under any transient operating condition; - Speed/slip measurement or estimation is not required; - Higher accuracy in filtering frequency components around the fundamental in case of rotor faults; - Reduction in the likelihood of false indications by avoiding confusion with other fault harmonics (the contribution of the most relevant fault frequency components under speed-varying conditions are clamped in a single frequency band); - Low memory requirement due to low sampling frequency; - Reduction in the latency of time processing (no requirement of repeated sampling operation).
Resumo:
The Curry-Howard isomorphism is the idea that proofs in natural deduction can be put in correspondence with lambda terms in such a way that this correspondence is preserved by normalization. The concept can be extended from Intuitionistic Logic to other systems, such as Linear Logic. One of the nice conseguences of this isomorphism is that we can reason about functional programs with formal tools which are typical of proof systems: such analysis can also include quantitative qualities of programs, such as the number of steps it takes to terminate. Another is the possiblity to describe the execution of these programs in terms of abstract machines. In 1990 Griffin proved that the correspondence can be extended to Classical Logic and control operators. That is, Classical Logic adds the possiblity to manipulate continuations. In this thesis we see how the things we described above work in this larger context.
Resumo:
The topic of this work concerns nonparametric permutation-based methods aiming to find a ranking (stochastic ordering) of a given set of groups (populations), gathering together information from multiple variables under more than one experimental designs. The problem of ranking populations arises in several fields of science from the need of comparing G>2 given groups or treatments when the main goal is to find an order while taking into account several aspects. As it can be imagined, this problem is not only of theoretical interest but it also has a recognised relevance in several fields, such as industrial experiments or behavioural sciences, and this is reflected by the vast literature on the topic, although sometimes the problem is associated with different keywords such as: "stochastic ordering", "ranking", "construction of composite indices" etc., or even "ranking probabilities" outside of the strictly-speaking statistical literature. The properties of the proposed method are empirically evaluated by means of an extensive simulation study, where several aspects of interest are let to vary within a reasonable practical range. These aspects comprise: sample size, number of variables, number of groups, and distribution of noise/error. The flexibility of the approach lies mainly in the several available choices for the test-statistic and in the different types of experimental design that can be analysed. This render the method able to be tailored to the specific problem and the to nature of the data at hand. To perform the analyses an R package called SOUP (Stochastic Ordering Using Permutations) has been written and it is available on CRAN.