2 resultados para static pomace
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the evaluation of tangential and normal stresses in moderately thick functionally graded conical and cylindrical shells subjected to mechanical loadings. Several types of graded materials are investigated. The functionally graded material consists of ceramic and metallic constituents. A four parameter power law function is used. The UTSDT allows the presence of a finite transverse shear stress at the top and bottom surfaces of the graded shell. In addition, the initial curvature effect included in the formulation leads to the generalization of the present theory (GUTSDT). The Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the governing equations, the external boundary conditions and the compatibility conditions. Transverse and normal stresses are also calculated by integrating the three dimensional equations of equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point of the conical or cylindrical shell or panel can be given. The initial curvature effect and the role of the power law functions are shown for a wide range of functionally conical and cylindrical shells under various loading and boundary conditions. Finally, numerical examples of the available literature are worked out.
Resumo:
Massive parallel robots (MPRs) driven by discrete actuators are force regulated robots that undergo continuous motions despite being commanded through a finite number of states only. Designing a real-time control of such systems requires fast and efficient methods for solving their inverse static analysis (ISA), which is a challenging problem and the subject of this thesis. In particular, five Artificial intelligence methods are proposed to investigate the on-line computation and the generalization error of ISA problem of a class of MPRs featuring three-state force actuators and one degree of revolute motion.