4 resultados para spray drying

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis focuses on the ceramic process for the production of optical grade transparent materials to be used as laser hosts. In order to be transparent a ceramic material must exhibit a very low concentration of defects. Defects are mainly represented by secondary or grain boundary phases and by residual pores. The strict control of the stoichiometry is mandatory to avoid the formation of secondary phases, whereas residual pores need to be below 150 ppm. In order to fulfill these requirements specific experimental conditions must be combined together. In addition powders need to be nanometric or at least sub-micrometric and extremely pure. On the other hand, nanometric powders aggregate easily and this leads to a poor, not homogeneous packing during shaping by pressing and to the formation of residual pores during sintering. Very fine powders are also difficult to handle and tend to absorb water on the surface. Finally, the powder manipulation (weighting operations, solvent removal, spray drying, shaping, etc), easily introduces impurities. All these features must be fully controlled in order to avoid the formation of defects that work as scattering sources thus decreasing the transparency of the material. The important role played by the processing on the transparency of ceramic materials is often underestimated. In the literature a high level of transparency has been reported by many authors but the description of the experimental process, in particular of the powder treatment and shaping, is seldom extensively described and important information that are necessary to reproduce the described results are often missing. The main goal of the present study therefore is to give additional information on the way the experimental features affect the microstructural evolution of YAG-based ceramics and thus the final properties, in particular transparency. Commercial powders are used to prepare YAG materials doped with Nd or Yb by reactive sintering under high vacuum. These dopants have been selected as the more appropriate for high energy and high peak power lasers. As far as it concerns the powder treatment, the thesis focuses on the influence of the solvent removal technique (rotavapor versus spray drying of suspensions in ethanol), the ball milling duration and speed, suspension concentration, solvent ratio, type and amount of dispersant. The influence of the powder type and process on the powder packing as well as the pressure conditions during shaping by pressing are also described. Finally calcination, sintering under high vacuum and in clean atmosphere, and post sintering cycles are studied and related to the final microstructure analyzed by SEM-EDS and HR-TEM, and to the optical and laser properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microparticelle a base di complessi polielettrolitici di Chitosano/Pectina per il rilascio nasale di Tacrina cloridrato. Lo scopo di questo studio è stata la ricerca di nuove formulazioni solide per la somministrazione nasale di Tacrina cloridrato allo scopo di ridurre l’eccessivo effetto di primo passaggio epatico ed aumentarne la biodisponibilità a livello del Sistema Nervoso Centrale. La Tacrina è stata incapsulata in microparticelle mucoadesive a base di complessi elettrolitici di chitosano e pectina. Le microparticelle sono state preparate mediante due diversi approcci tecnologici (spray-drying e spray-drying/liofilizzazione) e analizzate in termini di caratteristiche dimensionali, morfologiche e chimico-fisiche. Nanoparticelle di Chitosano reticolate con Sodio Cromoglicato per il trattamento della rinite allergica. Il Sodio Cromoglicato è uno dei farmaci utilizzati per il trattamento della rinite allergica. Come noto, la clearance mucociliare provoca una rapida rimozione dei farmaci in soluzione dalla cavità nasale, aumentando così il numero di somministrazioni giornaliere e, di conseguenza, riducendo la compliance del paziente. Per ovviare a tale problema, si è pensato di includere il sodio cromoglicato in nanoparticelle di chitosano, un polimero capace di aderire alla mucosa nasale, prolungare il contatto della formulazione con il sito di applicazione e ridurre il numero di somministrazioni giornaliere. Le nanoparticelle ottenute sono state caratterizzate in termini di dimensioni, resa, efficienza di incapsulazione e caricamento del farmaco, potenziale zeta e caratteristiche mucoadesive. Analisi quantitativa di Budesonide amorfa tramite calorimetria a scansione differenziale. È stato sviluppato un nuovo metodo quantitativo allo stato solido basato sulla Calorimetria a Scansione Differenziale (DSC) in grado di quantificare in modo selettivo e accurato la quantità di Budesonide amorfa presente in una miscela solida. Durante lo sviluppo del metodo sono stati affrontati problemi relativi alla convalida di metodi analitici su campioni solidi quali la miscelazione di polveri solide per la preparazione di miscele standard e il calcolo della precisione.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This PhD thesis focused on nanomaterial (NM) engineering for occupational health and safety, in the frame of the EU project “Safe Nano Worker Exposure Scenarios (SANOWORK)”. Following a safety by design approach, surface engineering (surface coating, purification process, colloidal force control, wet milling, film coating deposition and granulation) were proposed as risk remediation strategies (RRS) to decrease toxicity and emission potential of NMs within real processing lines. In the first case investigated, the PlasmaChem ZrO2 manufacturing, the colloidal force control applied to the washing of synthesis rector, allowed to reduce ZrO2 contamination in wastewater, performing an efficient recycling procedure of ZrO2 recovered. Furthermore, ZrO2 NM was investigated in the ceramic process owned by CNR-ISTEC and GEA-Niro; the spray drying and freeze drying techniques were employed decreasing NM emissivity, but maintaining a reactive surface in dried NM. Considering the handling operation of nanofibers (NFs) obtained through Elmarco electrospinning procedure, the film coating deposition was applied on polyamide non-woven to avoid free fiber release. For TiO2 NF the wet milling was applied to reduce and homogenize the aspect ratio, leading to a significant mitigation of fiber toxicity. In the Colorobbia spray coating line, Ag and TiO2 nanosols, employed to transfer respectively antibacterial or depolluting properties to different substrates, were investigated. Ag was subjected to surface coating and purification, decreasing NM toxicity. TiO2 was modified by surface coating, spray drying and blending with colloidal SiO2, improving its technological performance. In the extrusion of polymeric matrix charged with carbon nanotube (CNTs) owned by Leitat, the CNTs used as filler were granulated by spray drying and freeze spray drying techniques, allowing to reduce their exposure potential. Engineered NMs tested by biologists were further investigated in relevant biological conditions, to improve the knowledge of structure/toxicity mechanisms and obtain new insights for the design of safest NMs.