4 resultados para spherically invariant random process

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) are getting wide-spread attention since they became easily accessible with their low costs. One of the key elements of WSNs is distributed sensing. When the precise location of a signal of interest is unknown across the monitored region, distributing many sensors randomly/uniformly may yield with a better representation of the monitored random process than a traditional sensor deployment. In a typical WSN application the data sensed by nodes is usually sent to one (or more) central device, denoted as sink, which collects the information and can either act as a gateway towards other networks (e.g. Internet), where data can be stored, or be processed in order to command the actuators to perform special tasks. In such a scenario, a dense sensor deployment may create bottlenecks when many nodes competing to access the channel. Even though there are mitigation methods on the channel access, concurrent (parallel) transmissions may occur. In this study, always on the scope of monitoring applications, the involved development progress of two industrial projects with dense sensor deployments (eDIANA Project funded by European Commission and Centrale Adritica Project funded by Coop Italy) and the measurement results coming from several different test-beds evoked the necessity of a mathematical analysis on concurrent transmissions. To the best of our knowledge, in the literature there is no mathematical analysis of concurrent transmission in 2.4 GHz PHY of IEEE 802.15.4. In the thesis, experience stories of eDIANA and Centrale Adriatica Projects and a mathematical analysis of concurrent transmissions starting from O-QPSK chip demodulation to the packet reception rate with several different types of theoretical demodulators, are presented. There is a very good agreement between the measurements so far in the literature and the mathematical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of vibration qualification testing, with the popular Random Control mode of shakers, the specimen is excited by random vibrations typically set in the form of a Power Spectral Density (PSD). The corresponding signals are stationary and Gaussian, i.e. featuring a normal distribution. Conversely, real-life excitations are frequently non-Gaussian, exhibiting high peaks and/or burst signals and/or deterministic harmonic components. The so-called kurtosis is a parameter often used to statistically describe the occurrence and significance of high peak values in a random process. Since the similarity between test input profiles and real-life excitations is fundamental for qualification test reliability, some methods of kurtosis-control can be implemented to synthesize realistic (non-Gaussian) input signals. Durability tests are performed to check the resistance of a component to vibration-based fatigue damage. A procedure to synthesize test excitations which starts from measured data and preserves both the damage potential and the characteristics of the reference signals is desirable. The Fatigue Damage Spectrum (FDS) is generally used to quantify the fatigue damage potential associated with the excitation. The signal synthesized for accelerated durability tests (i.e. with a limited duration) must feature the same FDS as the reference vibration computed for the component’s expected lifetime. Current standard procedures are efficient in synthesizing signals in the form of a PSD, but prove inaccurate if reference data are non-Gaussian. This work presents novel algorithms for the synthesis of accelerated durability test profiles with prescribed FDS and a non-Gaussian distribution. An experimental campaign is conducted to validate the algorithms, by testing their accuracy, robustness, and practical effectiveness. Moreover, an original procedure is proposed for the estimation of the fatigue damage potential, aiming to minimize the computational time. The research is thus supposed to improve both the effectiveness and the efficiency of excitation profile synthesis for accelerated durability tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis provides a necessary and sufficient condition for asymptotic efficiency of a nonparametric estimator of the generalised autocovariance function of a Gaussian stationary random process. The generalised autocovariance function is the inverse Fourier transform of a power transformation of the spectral density, and encompasses the traditional and inverse autocovariance functions. Its nonparametric estimator is based on the inverse discrete Fourier transform of the same power transformation of the pooled periodogram. The general result is then applied to the class of Gaussian stationary ARMA processes and its implications are discussed. We illustrate that for a class of contrast functionals and spectral densities, the minimum contrast estimator of the spectral density satisfies a Yule-Walker system of equations in the generalised autocovariance estimator. Selection of the pooling parameter, which characterizes the nonparametric estimator of the generalised autocovariance, controlling its resolution, is addressed by using a multiplicative periodogram bootstrap to estimate the finite-sample distribution of the estimator. A multivariate extension of recently introduced spectral models for univariate time series is considered, and an algorithm for the coefficients of a power transformation of matrix polynomials is derived, which allows to obtain the Wold coefficients from the matrix coefficients characterizing the generalised matrix cepstral models. This algorithm also allows the definition of the matrix variance profile, providing important quantities for vector time series analysis. A nonparametric estimator based on a transformation of the smoothed periodogram is proposed for estimation of the matrix variance profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-linear effects are responsible for peculiar phenomena in charged particles dynamics in circular accelerators. Recently, they have been used to propose novel beam manipulations where one can modify the transverse beam distribution in a controlled way, to fulfil the constraints posed by new applications. One example is the resonant beam splitting used at CERN for the Multi-Turn Extraction (MTE), to transfer proton beams from PS to SPS. The theoretical description of these effects relies on the formulation of the particle's dynamics in terms of Hamiltonian systems and symplectic maps, and on the theory of adiabatic invariance and resonant separatrix crossing. Close to resonance, new stable regions and new separatrices appear in the phase space. As non-linear effects do not preserve the Courant-Snyder invariant, it is possible for a particle to cross a separatrix, changing the value of its adiabatic invariant. This process opens the path to new beam manipulations. This thesis deals with various possible effects that can be used to shape the transverse beam dynamics, using 2D and 4D models of particles' motion. We show the possibility of splitting a beam using a resonant external exciter, or combining its action with MTE-like tune modulation close to resonance. Non-linear effects can also be used to cool a beam acting on its transverse beam distribution. We discuss the case of an annular beam distribution, showing that emittance can be reduced modulating amplitude and frequency of a resonant oscillating dipole. We then consider 4D models where, close to resonance, motion in the two transverse planes is coupled. This is exploited to operate on the transverse emittances with a 2D resonance crossing. Depending on the resonance, the result is an emittance exchange between the two planes, or an emittance sharing. These phenomena are described and understood in terms of adiabatic invariance theory.