4 resultados para spermidine

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Ripening evaluation of two different Pecorino cheese varieties ripened according either to a traditional method in plant and in cave. Different ripening features have been analyzed in order to evaluate the cave as possible ripening environment with the aim of obtaining a peculiar product which could also establish an added value to the cultural heritage of the local place in which it has been originally manufactured. Methods and Results: Chemical-physical features of Pecorino cheese have been initially analyzed into two different ripening environments and experimentations, among which: pH, weight reduction and subsequent water activity. Furthermore, the microbial composition has been characterized in relationship with the two different ripening environments, undertaking a variety of microbial groups, such as: lactic bacteria, staphylococci, yeasts, lactococci, enterobacteria, enterococci. Besides, an additional analysis for the in-cave adaptability evaluation has been the identification of biogenic amines inside the Pecorino cheese (2-phenilethylamine, putrescine, cadaverine, hystidine, tyramine, spermine and spermidine). Further analysis were undertaken in order to track the lipid profile evolution, reporting the concentration of the cheese free fatty acids in object, in relation with ripening time, environment and production. In order to analyse the flavour compounds present in Pecorino cheese, the SPME-GC-MS technique has been widely employed. As a result, it is confirmed the trend showed by the short-chain free fatty acids, that is to say the fatty acids which are mostly involved in conveying a stronger flavor to the cheese. With the purpose of assessing the protheolytic patterns of the above-mentioned Pecorino cheese in the two different ripening environments and testing methods, the technique SDS-PAGE has been employed into the cheese insoluble fraction, whereas the SDS-PAGE technique has been carried out into the cheese soluble portion. Furthermore, different isolated belonging to various microbial groups have been genotypically characterized though the ITS-PCR technique with the aim to identify the membership species. With reference to lactic bacillus the characterized species are: Lactobacillus brevis, Lactobacillus curvatus and Lactobacillus paraplantarum. With reference to lactococci the predominant species is Lactococcus lactis, coming from the employed starter used in the cheese manufacturing. With reference to enterococcus, the predominant species are Enterococcus faecium and Enterococcus faecalis. Moreover, Streptococcus termophilus and Streptococcus macedonicus have been identified too. For staphylococci the identified species are Staphyilococcus equorum, Staphylococcus saprophyfiticus and Staphylococcus xylosus. Finally, a sensorial analysis has been undertaken through on one side a consumer test made by inexperienced consumers, and on the other side through a panel test achieved by expert consumers. From such test Pecorino cheese ripened in cave were found to be more pleasant in comparison with Pecorino cheese ripened in plant. Conclusions: The proposed approach and the undertaken analysis showed the cave as preferential ripening environment for Pecorino cheese and for the development of a more palatable product and safer for consumers’ health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jasmonates (JAs) and spermidine (Sd) influence fruit (and seed) development and ripening. In order to unravel their effects in peach fruit, at molecular level, field applications of methyl jasmonate (MJ) and propyl dihydrojasmonate (PDJ), and Sd were performed at an early developmental stage (late S1). At commercial harvest, JA-treated fruit were less ripe than controls. Realtime RT-PCR analyses confirmed a down-regulation of ethylene biosynthetic, perception and signaling genes, and flesh softening-related genes. The expression of cell wall-related genes, of a sugar-transporter and hormone-related transcript levels was also affected by JAs. Seeds from JA-treated fruit showed a shift in the expression of developmental marker genes suggesting that the developmental program was probably slowed down, in agreement with the contention that JAs divert resources from growth to defense. JAs also affected phenolic content and biosynthetic gene expression in the mesocarp. Levels of hydroxycinnamic acids, as well as those of flavan-3-ols, were enhanced, mainly by MJ, in S2. Transcript levels of phenylpropanoid pathway genes were up-regulated by MJ, in agreement with phenolic content. Sd-treated fruits at harvest showed reduced ethylene production and flesh softening. Sd induced a short-term and long-term response patterns in endogenous polyamines. At ripening the up-regulation of the ethylene biosynthetic genes was dramatically counteracted by Sd, leading to a down-regulation of softening-related genes. Hormone-related gene expression was also altered both in the short- and long-term. Gene expression analyses suggest that Sd interfered with fruit development/ripening by interacting with multiple hormonal pathways and that fruit developmental marker gene expression was shifted ahead in accord with a developmental slowing down. 24-Epibrassinolide was applied to Flaminia peaches under field conditions early (S1) or later (S3) during development. Preliminary results showed that, at harvest, treated fruit tended to be larger and less mature though quality parameters did not change relative to controls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poplar is considered a good candidate for phytoremediation, but its tolerance to heavy metals has not been fully investigated yet. In the present work, two different culture systems (in vitro and aeroponic/hydroponic) and two different stress tolerant clones of Populus alba (AL22 and Villafranca) were investigated for their total polyphenol and flavonoid content, individual phenolic compounds, polyamine, lipid peroxidation and hydrogen peroxide levels in response to Cu. In AL22 poplar plants cultured in vitro in the presence or absence of 50 μM Cu, total leaves polyphenol and flavonoid content was higher in treated samples than in controls but unaltered in the roots. Equally the same clone, grown under aeroponic conditions and hydroponically treated for 72 h with 100 μM Cu, displayed increased amount of polyphenols and flavonoids in the leaves, in particular chlorogenic acid and quercetin, and no differences in the roots. In exudates from treated roots total polyphenols and flavonoids, in particular catechin and epicatechin, were more abundant than in controls. Polyamine levels show an increase in conjugated putrescine (Put) and spermidine (Spd) was found. In the Villafranca clone, treated with 100 μM Cu for 6, 24 and 72 h, the pattern of polyphenol and flavonoid accumulation was the same as in AL22; in Cu-treated roots these compounds decreased compared with controls while they increased in root exudates. Free polyamine levels rose at 24 and 72 h while only conjugated Put increased at 24 h. Cu-treated Villafranca plants exhibited a higher malondialdehyde production than controls indicative of membrane lipid peroxidation and, therefore, oxidative stress. An in vitro experiment was carried to investigate the antioxidant effect of the polyamine spermidine (Spd). Exogenous Spd, supplied together with 100 μM Cu, reduced the accumulation of polyphenols and flavonoids, MDA and hydrogen peroxide induced by Cu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to investigate on some molecular mechanisms contributing to the pathogenesis of osteoarthritis (OA) and in particular to the senescence of articular chondrocytes. It is focused on understanding molecular events downstream GSK3β inactivation or dependent on the activity of IKKα, a kinase that does not belong to the phenotype of healthy articular chondrocytes. Moreover, the potential of some nutraceuticals on scavenging ROS thus reducing oxidative stress, DNA damage, and chondrocyte senescence has been evaluated in vitro. The in vitro LiCl-mediated GSK3β inactivation resulted in increased mitochondrial ROS production, that impacted on cellular proliferation, with S-phase transient arrest, increased SA-β gal and PAS staining, cell size and granularity. ROS are also responsible for the of increased expression of two major oxidative lesions, i.e. 1) double strand breaks, tagged by γH2AX, that associates with activation of GADD45β and p21, and 2) 8-oxo-dG adducts, that associate with increased IKKα and MMP-10 expression. The pattern observed in vitro was confirmed on cartilage from OA patients. IKKa dramatically affects the intensity of the DNA damage response induced by oxidative stress (H2O2 exposure) in chondrocytes, as evidenced by silencing strategies. At early time point an higher percentage of γH2AX positive cells and more foci in IKKa-KD cells are observed, but IKKa KD cells proved to almost completely recover after 24 hours respect to their controls. Telomere attrition is also reduced in IKKaKD. Finally MSH6 and MLH1 genes are up-regulated in IKKαKD cells but not in control cells. Hydroxytyrosol and Spermidine have a great ROS scavenging capacity in vitro. Both treatments revert the H2O2 dependent increase of cell death and γH2AX-foci formation and senescence, suggesting the ability of increasing cell homeostasis. These data indicate that nutraceuticals represent a great challenge in OA management, for both therapeutical and preventive purposes.