2 resultados para specific root length

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the thesis is to propose a Bayesian estimation through Markov chain Monte Carlo of multidimensional item response theory models for graded responses with complex structures and correlated traits. In particular, this work focuses on the multiunidimensional and the additive underlying latent structures, considering that the first one is widely used and represents a classical approach in multidimensional item response analysis, while the second one is able to reflect the complexity of real interactions between items and respondents. A simulation study is conducted to evaluate the parameter recovery for the proposed models under different conditions (sample size, test and subtest length, number of response categories, and correlation structure). The results show that the parameter recovery is particularly sensitive to the sample size, due to the model complexity and the high number of parameters to be estimated. For a sufficiently large sample size the parameters of the multiunidimensional and additive graded response models are well reproduced. The results are also affected by the trade-off between the number of items constituting the test and the number of item categories. An application of the proposed models on response data collected to investigate Romagna and San Marino residents' perceptions and attitudes towards the tourism industry is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atrial fibrillation is associated with a five-fold increase in the risk of cerebrovascular events,being responsible of 15-18% of all strokes.The morphological and functional remodelling of the left atrium caused by atrial fibrillation favours blood stasis and, consequently, stroke risk. In this context, several clinical studies suggest that stroke risk stratification could be improved by using haemodynamic information on the left atrium (LA) and the left atrial appendage (LAA). The goal of this study was to develop a personalized computational fluid-dynamics (CFD) model of the left atrium which could clarify the haemodynamic implications of atrial fibrillation on a patient specific basis. The developed CFD model was first applied to better understand the role of LAA in stroke risk. Infact, the interplay of the LAA geometric parameters such as LAA length, tortuosity, surface area and volume with the fluid-dynamics parameters and the effects of the LAA closure have not been investigated. Results demonstrated the capabilities of the CFD model to reproduce the real physiological behaviour of the blood flow dynamics inside the LA and the LAA. Finally, we determined that the fluid-dynamics parameters enhanced in this research project could be used as new quantitative indexes to describe the different types of AF and open new scenarios for the patient-specific stroke risk stratification.