9 resultados para spaltbares PEG

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this Ph.D. project has been the photophysical and photochemical characterization of new photo- and redox-active supramolecular systems. In particular we studied two different classes of compounds: metal complexes and dendrimers. Two different families of bis-cyclometalated neutral Ir(III) complexes are presented and their photophysical properties are discussed. The first family of complexes contains two 2-phenylpyridyl (ppy) or 2-(4,6-difluorophenyl)pyridyl (F2ppy) cyclometalated ligands and an ancillary ligand constituted by a phenol-oxazoline (phox), which can be substituted in the third position with a fluorine group (Fphox). In the second part of this study, we present another family of bis-cyclometalated Ir(III) complexes in which the ancillary ligand could be a chiral or an achiral bis-oxazoline (box). We report on their structural, electrochemical, photophysical, and photochemical properties. Complexes containing phox and Fphox ancillary ligands show blue luminescence with very high quantum yield, while complexes with box ligands do not show particularly interesting photophysical properties. Surprisingly these complexes give an unexpected photoreaction when irradiated with UV light in presence of dioxygen. This photoreaction originates a stable, strong blue emitting and particularly interesting photoproduct. Three successive generations of a family of polyethyleneglycol (PEG)-coated Pd(II) tetrabenzoporphyrin (PdTBP)-based dendritic nanoprobes are presented, and their ability to sensitize singlet oxygen and inflict cellular photodamage are discussed. It was found that the size of the dendrimer has practically no effect on the singlet oxygen sensitization efficiency, that approximate the unity, in spite of the strong attenuation of the triplet quenching rate with an increase in the dendrimer generation. Nevertheless, when compared against a commonly used singlet oxygen sensitizer, as Photofrin, the phosphorescent probes were found to be non-phototoxic. The lack of phototoxicity is presumably due to the inability of PEGylated probes to associate with cell surfaces and/or penetrate cellular membranes. The results suggest that protected phosphorescent probes can be safely used for oxygen measurements in biological systems in vivo. A new family of two photoswitchable (G0(Azo) and G1(Azo)) dendrimers with an azobenzene core, two cyclam units as coordination sites for metal ions, and luminescent naphthalene units at the periphery have been characterized and their coordination abilities have been studied. Because of their proximity, the various functional groups of the dendrimer may interact, so that the properties of the dendrimers are different from those exhibited by the separated functional units. Both the naphthalene fluorescence and the azobenzene photoisomerization can be observed in the dendrimer, but it has been shown that (i) the fluorescent excited state of the naphthalene units is substantially quenched by excimer and exciplex formation and by energy transfer to the azobenzene units, and (ii) in the latter case the fluorescence quenching is accompanied by the photosensitized isomerization of the trans → cis, and, with higher efficiency, the cis → trans reaction. Complexation of these dendrimers, both trans and cis isomers, with Zn(II) ions shows that complexes of 1:1 and 2:1 metal per dendrimer stoichiometry are formed showing different photophysical and photochemical properties compared to the corresponding free ligands. Practically unitary efficiency of the sensitized isomerization of trans → cis and cis → trans reaction is observed, as well as a slight increase in the naphthalene monomer emission. These results are consistent with the coordination of the cyclam amine units with Zn(II), which prevents exciplex formation. No indication of a concomitant coordination of both cyclam to a single metal ion has been obtained both for trans and cis isomer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to design, synthesize and develop a nanoparticle based system to be used as a chemosensor or as a label in bioanalytical applications. A versatile fluorescent functionalizable nanoarchitecture has been effectively produced based on the hydrolysis and condensation of TEOS in direct micelles of Pluronic® F 127, obtaining highly monodisperse silica - core / PEG - shell nanoparticles with a diameter of about 20 nm. Surface functionalized nanoparticles have been obtained in a one-pot procedure by chemical modification of the hydroxyl terminal groups of the surfactant. To make them fluorescent, a whole library of triethoxysilane fluorophores (mainly BODIPY based), encompassing the whole visible spectrum has been synthesized: this derivatization allows a high degree of doping, but the close proximity of the molecules inside the silica matrix leads to the development of self - quenching processes at high doping levels, with the concomitant fall of the fluorescence signal intensity. In order to bypass this parasite phenomenon, multichromophoric systems have been prepared, where highly efficient FRET processes occur, showing that this energy pathway is faster than self - quenching, recovering the fluorescence signal. The FRET efficiency remains very high even four dye nanoparticles, increasing the pseudo Stokes shift of the system, attractive feature for multiplexing analysis. These optimized nanoparticles have been successfully exploited in molecular imaging applications such as in vitro, in vivo and ex vivo imaging, proving themselves superior to conventional molecular fluorophores as signaling units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decades noble metal nanoparticles (NPs) arose as one of the most powerful tools for applications in nanomedicine field and cancer treatment. Glioblastoma multiforme (GBM), in particular, is one of the most aggressive malignant brain tumors that nowadays still presents a dramatic scenario concerning median survival. Gold nanorods (GNRs) and silver nanoparticles (AgNPs) could find applications such as diagnostic imaging, hyperthermia and glioblastoma therapy. During these three years, both GNRs and AgNPs were synthesized with the “salt reduction” method and, through a novel double phase transfer process, using specifically designed thiol-based ligands, lipophilic GNRs and AgNPs were obtained and separately entrapped into biocompatible and biodegradable PEG-based polymeric nanoparticles (PNPs) suitable for drug delivery within the body. Moreover, a synergistic effect of AgNPs with the Alisertib drug, were investigated thanks to the simultaneous entrapment of these two moieties into PNPs. In addition, Chlorotoxin (Cltx), a peptide that specifically recognize brain cancer cells, was conjugated onto the external surface of PNPs. The so-obtained novel nanosystems were evaluated for in vitro and in vivo applications against glioblastoma multiforme. In particular, for GNRs-PNPs, their safety, their suitability as optoacoustic contrast agents, their selective laser-induced cells death and finally, a high tumor retention were all demonstrated. Concerning AgNPs-PNPs, promising tumor toxicity and a strong synergistic effect with Alisertib was observed (IC50 10 nM), as well as good in vivo biodistribution, high tumor uptake and significative tumor reduction in tumor bearing mice. Finally, the two nanostructures were linked together, through an organic framework, exploiting the click chemistry azido-alkyne Huisgen cycloaddition, between two ligands previously attached to the NPs surface; this multifunctional complex nanosystem was successfully entrapped into PNPs with nanoparticles’ properties maintenance, obtaining in this way a powerful and promising tool for cancer fight and defeat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of anti-IFNα antibodies is an occurrence described in chronic hepatitis C patients during treatment with Interferonα/PEG-Interferonα. However, its relevance, especially in difficult-to treat patients, has not been defined. Methods: We retrospectively measured the serum levels of anti-IFNα antibodies (baseline and week 12) and IFNα levels (week 12) by ELISA in 76 previous non-responders, and in 14 naive patients treated with Pegylated-IFNα and Ribavirin. A group of 57 healthy donors (HD) was also assessed as control. Positivity to anti-IFNα antibodies was established on the values of HD. Results: Baseline anti-IFNα antibodies were detected in 15.5% of patients and in 7% of HD, with significantly higher concentrations in patients than HD (181.5±389.9 vs 95.9±143.0 ng mL−1, p=0.0023). All positive patients were IFNα-experienced. At week 12, the prevalence of positivity increased to 22.3 and 28.5% in experienced and naïve patients, respectively, and the levels of anti-IFNα antibodies did not differ between the two groups (391±792.3 vs 384.7±662.6 ng mL−1, respectively). IFNα concentrations were significantly lower in antibody-positive patients than in antibody-negatives (988.2±1402 vs 3462±830.8 pg mL−1, p≤0.0001) and the levels of antibodies and IFNα were inversely correlated (r=-0.405, p=0.0001). The antibody-positive population clustered in null responders (67%) and 19/21 patients (90%) did not achieve SVR. Conclusions: The development of anti-IFNα antibodies is a non-negligible occurrence in patients treated with PEG-IFNα, is stable over time, and has a relevant clinical impact when associated with low levels of circulating PEG-IFNα. It should be considered in patients undergoing treatments including PEG-IFNα.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to design, synthesize and characterize dye-doped silica nanoparticles (DDSNPs) to be used as chemosensors or labels in bioanalytical applications. DDSNPs represent one of the most versatile and useful components in nanomedicine displaying important features such as high colloid stability in water, low toxicity, one-pot inexpensive synthesis and tunable fluorescence emission. Starting from the one-pot and highly reproducible synthesis of “silica-core/PEG shell” DDSNPs based on the use of micelles of Pluronic F127, in which take place both hydrolysis and condensation of the silica precursor and of the dyes functionalized with a triethoxysilane group, we developed DDSNPs suitable for optical and optoacustic imaging, drug loading and chemical sensing obtaining very interesting results for the further development of nanomedicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focus is the development of hybrid organic-inorganic systems based on Silicon Nanocrystals (SiNCs) with possible applications in the field of bioimaging and solar energy conversion. SiNCs were engineered thanks to the realization of a strong covalent Si-C bond on their surface, which allowed us to disperse them in different solvents with different final purpose. Chapter 1 introduces the basic properties of nanomaterials. Chapter 2 describes all the synthetic procedures to obtain the organic molecules-functionalized SiNCs. Chapter 3 illustrates an organic-inorganic antenna system based on SiNCs conjugated with diphenylanthracene (DPA) photoactive molecules, which was also embedded into Luminescent Solar Concentrators (LSC) made of a polymeric matrix. The optical and photovoltaic performances of this device were compared with the ones of a LSC embedded with a physical mixture made of SiNCs plus DPA at the same concentrations of the two components in the covalent system. Chapter 4 shows many different techniques to functionalize SiNCs with polyethylene glycol (PEG) chains in order to make them dispersible in water, for biomedical imaging applications. Chapter 5 presents the synthesis of dyes and/or SiNCs loaded Polymer Nanoparticles (PNPs) capable of excitation energy transfer (EET) mechanism. Chapter 6 is focused on the realization of photo-switchable systems based on azobenzene derivatives-functionalized SiNCs. These organic-inorganic hybrid materials were studied to possibly obtain a new light-driven response of SiNCs. In the end, chapter 7 reports the activity I followed in America, at The University of Texas at Austin, in the laboratory led by the professor Brian Korgel. Here I studied and compared the properties of high temperature hydrosilylated SiNCs and room temperature, radical promoted, hydrosilylated SiNCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanomaterials are nowadays widely recognised as advantageous sensing tools due to their unique properties. Some natural nanomaterials, such as DNA or hyaluronic acid analysed in this PhD thesis, have an intrinsic biocompatibility that overcomes a series of issues in the field of sensing in biological environments. Therefore, the main aim of this project was to derivatize HA chains with luminescent dyes - both organic and metal complexes - in order to obtain natural polymer-based optical sensors. A derivatization of HA with these moieties was obtained and a photophysical characterization was provided. To prove their sensing ability towards nanomaterials, the interaction with. PluS Nanoparticles, featuring an outer PEG shell, was tested. It was mostly demonstrated that the main features of the luminophores used were present in the HA nanogels as well. For example, HA@Dansyl was proven to be a luminescent probe able to sense different environment polarities. Furthermore, in HA@PA the amount of excimers/monomers emission was found to be relatable to the degree of entanglement of HA chains, that changes upon interactions with nanoparticles. Moreover, two ruthenium bipyridyl derivatives were linked to HA and it was found out that HA interacts with long DNA sequences. Also, the presence of BPA, a small molecule of environmental concern, was detected using (i) an already studied hyaluronic acid derivative with rhodamine (HA@RB) , (ii) a dizinc ruthenium complex coordinating BPA to the metal centres, and (iii) a new probe constituted by PluSNPs@DEAC and HA@RB. Despite all the systems were found to be able to detect BPA, the latter probe presented advantages in terms of sensitivity. Furthermore, the chapter 2 of this thesis is focused on the detection of a NF-κB protein in PC3 cancer cells. via confocal microscopy by following a FRET signal variation on a triplex-hairpin derivatized with a FRET couple of dyes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general description of the work presented in this thesis can be divided into three areas of interest: micropore fabrication, nanopore modification, and their applications. The first part of the thesis is related to the novel, reliable, cost-effective, potable, mass-productive, robust, and ease of use micropore flowcell that works based on the RPS technique. Based on our first goal, which was finding an alternate materials and processes that would shorten production times while lowering costs and improving signal quality, the polyimide film was used as a substrate to create precise pores by femtosecond laser, and the resulting current blockades of different sizes of the nanoparticles were recorded. Based on the results, the device can detecting nano-sized particles by changing the current level. The experimental and theoretical investigation, scanning electron microscopy, and focus ion beam were performed to explain the micropore's performance. The second goal was design and fabrication of a leak-free, easy-to-assemble, and portable polymethyl methacrylate flowcell for nanopore experiments. Here, ion current rectification was studied in our nanodevice. We showed a self-assembly-based, controllable, and monitorable in situ Poly(l-lysine)- g-poly(ethylene glycol) coating method under voltage-driven electrolyte flow and electrostatic interaction between nanopore walls and PLL backbones. Using designed nanopore flowcell and in situ monolayer PLL-g-PEG functionalized 20±4 nm SiN nanopores, we observed non-sticky α-1 anti-trypsin protein translocation. additionally, we could show the enhancement of translocation events through this non-sticky nanopore, and also, estimate the volume of the translocated protein. In this study, by comparing the AAT protein translocation results from functionalized and non-functionalized nanopore we demonstrated the 105 times dwell time reduction (31-0.59ms), 25% amplitude enhancement (0.24-0.3 nA), and 15 times event’s number increase (1-15events/s) after functionalization in 1×PBS at physiological pH. Also, the AAT protein volume was measured, close to the calculated AAT protein hydrodynamic volume and previous reports.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic polymers constitute a wide class of materials which has enhanced the quality of human life, providing comforts and innovations. Anyway, the increasing production and the incorrect waste management, are leading to the occurrence of polymers in the environment, generating concern. To understand the extent of this issue, analytical investigation holds an essential position. Standardised methods have not established yet, and additional studies are required to improve the present knowledge. The main aim of this thesis was to provide comprehensive information about the potential of pyrolysis coupled with gas-chromatography and mass spectrometry (Py-GC-MS) for polymers investigation, from their characterisation to their identification and quantification in complex matrices. Water-soluble (poly(dimethylsiloxanes), PDMS bearing poly(ethylene glycol), PEG, side chains) and water-insoluble polymers (microplastics, MPs, and bioplastics) were studied. The different studies revealed the possibility to identify heterogeneous classes of polymers, fingerprinting the presence of PDMS copolymers and distinguishing chemically different polyurethanes (PURs). The occurrence of secondary reactions in pyrolysis of polymer mixtures was observed as possible drawback. Pyrolysis products indicative of secondary reactions and their reaction mechanisms were identified. Py-GC-MS also revealed its fundamental role for the identification of polymers composing commercial bioplastics items based. The results aided to identify chemicals that have the potential to migrate in sea waters. Investigations of environmental samples demonstrated the capability of Py-GC-MS to provide reliable, reproducible and comparable results about polymers in complex matrices (PEG-PDMS in sewage sludges and PURs and other MPs in road dusts and spider webs). Criticisms were especially found in quantitation, such as the retrieval reference materials, the construction of reliable calibration protocols and the occurrence of bias due to interferences between pyrolysis products. This thesis pursues the greater purpose to develop harmonised and standardised methods for environmental investigations of polymers, that is fundamental to assess the real state of the environment.