6 resultados para soil critical level

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

At ecosystem level soil respiration (Rs) represents the largest carbon (C) flux after gross primary productivity, being mainly generated by root respiration (autotrophic respiration, Ra) and soil microbial respiration (heterotrophic respiration, Rh). In the case of terrestrial ecosystems, soils contain the largest C-pool, storing twice the amount of C contained in plant biomass. Soil organic matter (SOM), representing the main C storage in soil, is decomposed by soil microbial community. This process produces CO2 which is mainly released as Rh. It is thus relevant to understand how microbial activity is influenced by environmental factors like soil temperature, soil moisture and nutrient availability, since part of the CO2 produced by Rh, directly increases atmospheric CO2 concentration and therefore affects the phenomenon of climate change. Among terrestrial ecosystems, agricultural fields have traditionally been considered as sources of atmospheric CO2. In agricultural ecosystems, in particular apple orchards, I identified the role of root density, soil temperature, soil moisture and nitrogen (N) availability on Rs and on its two components, Ra and Rh. To do so I applied different techniques to separate Rs in its two components, the ”regression technique” and the “trenching technique”. I also studied the response of Ra to different levels of N availability, distributed either in a uniform or localized way, in the case of Populus tremuloides trees. The results showed that Rs is mainly driven by soil temperature, to which it is positively correlated, that high levels of soil moisture have inhibiting effects, and that N has a negligible influence on total Rs, as well as on Ra. Further I found a negative response of Rh to high N availability, suggesting that microbial decomposition processes in the soil are inhibited by the presence of N. The contribution of Ra to Rs was of 37% on average.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil is a critically important component of the earth’s biosphere. Developing agricultural production systems able to conserve soil quality is essential to guarantee the current and future capacity of soil to provide goods and services. This study investigates the potential of microbial and biochemical parameters to be used as early and sensitive soil quality indicators. Their ability to differentiate plots under contrasting fertilization regimes is evaluated based also on their sensitivity to seasonal fluctuations of environmental conditions and on their relationship with soil chemical parameters. Further, the study addresses some of the critical methodological aspects of microplate-based fluorimetric enzyme assays, in order to optimize assay conditions and evaluate their suitability to be used as a toll to asses soil quality. The study was based on a long-term field experiment established in 1966 in the Po valley (Italy). The soil was cropped with maize (Z. mays L.) and winter wheat (T. aestivum L.) and received no organic fertilization, crop residue or manure, in combination with increasing levels of mineral N fertilizer. The soil microbiota responded to manure amendment increasing it biomass and activity and changing its community composition. Crop residue effect was much more limited. Mineral N fertilization stimulated crop residue mineralization, shifted microbial community composition and influenced N and P cycling enzyme activities. Seasonal fluctuations of environmental factors affected the soil microbiota. However microbial and biochemical parameters seasonality did not hamper the identification of fertilization-induced effects. Soil microbial community abundance, function and composition appeared to be strongly related to soil organic matter content and composition, confirming the close link existing between these soil quality indicators. Microplate-based fluorimetric enzyme assays showed potential to be used as fast and throughput toll to asses soil quality, but required proper optimization of the assay conditions for a precise estimation of enzymes maximum potential activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The European renewable energy directive 2009/28/EC (E.C. 2009) provides a legislative framework for reducing GHG emissions by 20%, while achieving a 20% share of energy from renewable sources by 2020. Perennial energy crops could significantly contribute to limit GHG emissions through replacing equivalent fossil fuels and by sequestering a considerable amount of carbon into the soil through the large amounts of belowground biomass produced. The objective of this study is to evaluate the effects of land use change that perennial energy crops have on croplands (switchgrass) and marginal grasslands (miscanthus). For that purpose above and belowground biomass, SOC variation and Net Ecosystem Exchange were evaluated after five years of growth. At aboveground level both crops produced high biomass under cropland conditions as well as under marginal soils. At belowground level they also produced large amounts of biomass, but no significant influences on SOC in the upper layer (0-30 cm) were found. This is probably because of the "priming effect" that caused fast carbon substitution. In switchgrass only it was found a significant SOC increase in deeper layers (30-60 cm), while in the whole soil profile (0-60 cm) SOC increased from 42 to 51 ha-1. However, the short experimental periods (for both switchgrass and miscanthus), in which land use change was evaluated, do not permit to determine the real capacity of perennial energy crops to accumulate SOC. In conclusion the large amounts of belowground biomass enhanced the SOC dynamic through the priming effect resulting in increased SOC in cropland but not in marginal grassland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model is developed to represent the activity of a farm using the method of linear programming. Two are the main components of the model, the balance of soil fertility and the livestock nutrition. According to the first, the farm is supposed to have a total requirement of nitrogen, which is to be accomplished either through internal sources (manure) or through external sources (fertilisers). The second component describes the animal husbandry as having a nutritional requirement which must be satisfied through the internal production of arable crops or the acquisition of feed from the market. The farmer is supposed to maximise total net income from the agricultural and the zoo-technical activities by choosing one rotation among those available for climate and acclivity. The perspective of the analysis is one of a short period: the structure of the farm is supposed to be fixed without possibility to change the allocation of permanent crops and the amount of animal husbandry. The model is integrated with an environmental module that describes the role of the farm within the carbon-nitrogen cycle. On the one hand the farm allows storing carbon through the photosynthesis of the plants and the accumulation of carbon in the soil; on the other some activities of the farm emit greenhouse gases into the atmosphere. The model is tested for some representative farms of the Emilia-Romagna region, showing to be capable to give different results for conventional and organic farming and providing first results concerning the different atmospheric impact. Relevant data about the representative farms and the feasible rotations are extracted from the FADN database, with an integration of the coefficients from the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geochemical mapping is a valuable tool for the control of territory that can be used not only in the identification of mineral resources and geological, agricultural and forestry studies but also in the monitoring of natural resources by giving solutions to environmental and economic problems. Stream sediments are widely used in the sampling campaigns carried out by the world's governments and research groups for their characteristics of broad representativeness of rocks and soils, for ease of sampling and for the possibility to conduct very detailed sampling In this context, the environmental role of stream sediments provides a good basis for the implementation of environmental management measures, in fact the composition of river sediments is an important factor in understanding the complex dynamics that develop within catchment basins therefore they represent a critical environmental compartment: they can persistently incorporate pollutants after a process of contamination and release into the biosphere if the environmental conditions change. It is essential to determine whether the concentrations of certain elements, in particular heavy metals, can be the result of natural erosion of rocks containing high concentrations of specific elements or are generated as residues of human activities related to a certain study area. This PhD thesis aims to extract from an extensive database on stream sediments of the Romagna rivers the widest spectrum of informations. The study involved low and high order stream in the mountain and hilly area, but also the sediments of the floodplain area, where intensive agriculture is active. The geochemical signals recorded by the stream sediments will be interpreted in order to reconstruct the natural variability related to bedrock and soil contribution, the effects of the river dynamics, the anomalous sites, and with the calculation of background values be able to evaluate their level of degradation and predict the environmental risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physicochemical interactions between water, sediment and soil deeply influence the formation and development of the ecosystem. In this research, different freshwater, brackish and saline subaqueous environments of Northern Italy were chosen as study area to investigate the physicochemical processes which occur at the interface between water and sediments, as well as the effects of soil submergence on ecosystem development. In the freshwater system of the Reno river basin, the main purpose was to define the heavy metals hazard in water and sediments of natural and artificial water courses. Heavy metals partitioning and speciation allowed to assess the environmental risk linked to the critical action of dredging canal sediments, for the maintenance of the hydraulic safety of plain lands. In addition, some bioremediation techniques were experimented for protecting sediments from heavy metals contamination, and for giving an answer to the problem of sediments management. In the brackish system of S. Vitale park, the development of hydromorphic and subaqueous soils was investigated. The study of soil profiles highlighted the presence of a soil continuum among pedons subjected to different saturation degrees. This investigation allowed to the identification of both morphological and physicochemical indicators, which characterize the formation of subaqueous soils and describe the soil hydromorphism in transitional soil systems. In the saline system of Grado lagoon, an ecosystem approach was used to define the role of water oscillation in soil characterization and plants colonization. This study highlighted the close relationship and the mutual influence of soil submergence and aeration, tide oscillation and vegetation cover, on the soil development. In view of climate change, this study contribute to understand and suppose how soil and landscape could evolve. However, a complete evaluation of hydromorphic soil functionality will be achieved only involving physiological and biochemical expertise in these kind of studies.