6 resultados para soft controls

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD thesis has been proposed to validate and then apply innovative analytical methodologies for the determination of compounds with harmful impact on human health, such as biogenic amines and ochratoxin A in wines. Therefore, the influence of production technology (pH, amino acids precursor and use of different malolactic starters) on biogenic amines content in wines was evaluated. An HPLC method for simultaneous determination of amino acids and amines with precolumnderivatization with 9-Fluorenyl-methoxycarbonyl chloride (FMOC-Cl) and UV detection was developed. Initially, the influence of pH, time of derivatization, gradient profile were studied. In order to improve the separation of amino acids and amines and reduce the time of analysis, it was decided to study the influence of different flows and the use of different columns in the chromatographic method. Firstly, a C18 Luna column was used and later two monolithic columns Chromolith in series. It appeared to be suitable for an easy, precise and accurate determination of a relatively large number of amino acids and amines in wines. This method was then applied on different wines produced in the Emilia Romagna region. The investigation permitted to discriminate between red and white wines. Amino acids content is related to the winemaking process. Biogenic amines content in these wines does not represent a possible toxicological problem for human health. The results of the study of influence of technologies and wine composition demonstrated that pH of wines and amino acids content are the most important factors. Particularly wines with pH > 3,5 show higher concentration of biogenic amines than wines with lower pH. The enrichment of wines by nutrients also influences the content of some biogenic amines that are higher in wines added with amino acids precursors. In this study, amino acids and biogenic amines are not statistically affected by strain of lactic acid bacteria inoculated as a starter for malolactic fermentation. An evaluation of different clean-up (SPE-MycoSep; IACs and LLE) and determination methods (HPLC and ELISA) of ochratoxin A was carried out. The results obtained proved that the SPE clean-up are reliable at the same level while the LLE procedures shows lowest recovery. The ELISA method gave a lower determination and a low reproducibility than HPLC method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and rationale for the study. This study investigated whether human immunodeficiency virus (HIV) infection adversely affects the prognosis of patients diagnosed with hepatocellular carcinoma (HCC).Thirty-four HIV-positive patients with chronic liver disease, consecutively diagnosed with HCC from 1998 to 2007 were one-to-one matched with 34 HIV negative controls for: sex, liver function (Child-Turcotte-Pugh class [CTP]), cancer stage (BCLC model) and, whenever possible, age, etiology of liver disease and modality of cancer diagnosis. Survival in the two groups and independent prognostic predictors were assessed. Results. Among HIV patients 88% were receiving HAART. HIV-RNA was undetectable in 65% of cases; median lymphocyte CD4+ count was 368.5/mmc. Etiology of liver disease was mostly related to HCV infection. CTP class was: A in 38%, B in 41%, C in 21% of cases. BCLC cancer stage was: early in 50%, intermediate in 23.5%, advanced in 5.9%, end-stage in 20.6% of cases. HCC treatments and death causes did not differ between the two groups. Median survival did not differ, being 16 months (95% CI: 6-26) in HIV positive and 23 months (95% CI: 5-41) in HIV negative patients (P=0.391). BCLC cancer stage and HCC treatment proved to be independent predictors of survival both in the whole population and in HIV patients. Conclusions. Survival of HIV infected patients receiving antiretroviral therapy and diagnosed with HCC is similar to that of HIV negative patients bearing this tumor. Prognosis is determined by the cancer bulk and its treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have modeled various soft-matter systems with molecular dynamics (MD) simulations. The first topic concerns liquid crystal (LC) biaxial nematic (Nb) phases, that can be possibly used in fast displays. We have investigated the phase organization of biaxial Gay-Berne (GB) mesogens, considering the effects of the orientation, strength and position of a molecular dipole. We have observed that for systems with a central dipole, nematic biaxial phases disappear when increasing dipole strength, while for systems characterized by an offset dipole, the Nb phase is stabilized at very low temperatures. In a second project, in view of their increasing importance as nanomaterials in LC phases, we are developing a DNA coarse-grained (CG) model, in which sugar and phosphate groups are represented with Lennard-Jones spheres, while bases with GB ellipsoids. We have obtained shape, position and orientation parameters for each bead, to best reproduce the atomistic structure of a B-DNA helix. Starting from atomistic simulations results, we have completed a first parametrization of the force field terms, accounting for bonded (bonds, angles and dihedrals) and non-bonded interactions (H-bond and stacking). We are currently validating the model, by investigating stability and melting temperature of various sequences. Finally, in a third project, we aim to explain the mechanism of enantiomeric discrimination due to the presence of a chiral helix of poly(gamma-benzyl L-glutamate) (PBLG), in solution of dimethylformamide (DMF), interacting with chiral or pro-chiral molecules (in our case heptyl butyrate, HEP), after tuning properly an atomistic force field (AMBER). We have observed that DMF and HEP molecules solvate uniformly the PBLG helix, but the pro-chiral solute is on average found closer to the helix with respect to the DMF. The solvent presents a faster isotropic diffusion, twice as HEP, also indicating a stronger interaction of the solute with the helix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 3D human movement analysis performed using stereophotogrammetric systems and skin markers, bone pose can only be estimated in an indirect fashion. During a movement, soft tissue deformations make the markers move with respect to the underlying bone generating soft tissue artefact (STA). STA has devastating effects on bone pose estimation and its compensation remains an open question. The aim of this PhD thesis was to contribute to the solution of this crucial issue. Modelling STA using measurable trial-specific variables is a fundamental prerequisite for its removal from marker trajectories. Two STA model architectures are proposed. Initially, a thigh marker-level artefact model is presented. STA was modelled as a linear combination of joint angles involved in the movement. This model was calibrated using ex-vivo and in-vivo STA invasive measures. The considerable number of model parameters led to defining STA approximations. Three definitions were proposed to represent STA as a series of modes: individual marker displacements, marker-cluster geometrical transformations (MCGT), and skin envelope shape variations. Modes were selected using two criteria: one based on modal energy and another on the selection of modes chosen a priori. The MCGT allows to select either rigid or non-rigid STA components. It was also empirically demonstrated that only the rigid component affects joint kinematics, regardless of the non-rigid amplitude. Therefore, a model of thigh and shank STA rigid component at cluster-level was then defined. An acceptable trade-off between STA compensation effectiveness and number of parameters can be obtained, improving joint kinematics accuracy. The obtained results lead to two main potential applications: the proposed models can generate realistic STAs for simulation purposes to compare different skeletal kinematics estimators; and, more importantly, focusing only on the STA rigid component, the model attains a satisfactory STA reconstruction with less parameters, facilitating its incorporation in an pose estimator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the search to understand the interaction between cells and their underlying substrates, life sciences are beginning to incorporate micro and nano-technology based tools to probe, measure and improve cellular behavior. In this frame, patterned surfaces provide a platform for highly defined cellular interactions and, in perspective, they offer unique advantages for artificial implants. For these reasons, functionalized materials have recently become a central topic in tissue engineering. Nanotechnology, with its rich toolbox of techniques, can be the leading actor in the materials patterning field. Laser assisted methods, conventional and un-conventional lithography and other patterning techniques, allow the fabrication of functional supports with tunable properties, either physically, or topographically and chemically. Among them, soft lithography provides an effective (and low cost) strategy for manufacturing micro and nanostructures. The main focus of this work is the use of different fabrication approaches aiming at a precise control of cell behavior, adhesion, proliferation and differentiation, through chemically and spatially designed surfaces.