2 resultados para slow-growing birds

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis reports five studies that may contribute to understand how weaning affects the immune and intestinal microbiota maturation of the piglet and proposes some possible nutritional strategies to attenuate its negative effects. The first study showed that weaning is associated in Payer’s patches with the activation of MHC response against class I antigens and that related to the stimulation to IFN-γ and showed, for the first time, that their blood at weaning remains dominated by immature blood cells. In the second study we tested if the use of a live vaccine against a conditionally but also genetically based intestinal disease, like PWD, could have an impact on the growth performance of pigs and their intestinal microbiota and if it could provide a model to test the response to nutritional strategies under conditions of an immune and intestinal stimulation for animals susceptible to ETEC type. In this study, we demonstrated how a vaccinal strain of F4/F18 E. coli can affect the gut microbial composition of piglets, regardless of their genetic susceptibility to ETEC infection. In the third study we evidenced how a nucleotide supplementation can favor the proliferation of jejunal Peyer patches and anticipate the maturation of the fecal microbiota. In the fourth study we reported how xylanase can favor the proliferation of Lactobacillus reuteri. Finally, we showed some first results on the muscles fiber development in fast- and slow-growing suckling pigs and the relationship with the intestinal microbiota. Taken together, the results presented in this thesis provide new insight about the interplay between the host-genetics, gut microbial composition, and host physiological status. Furthermore, it provides confirmation that the use of known genetic markers for ETEC F4 and F18 could represent a potential tool to stratify the animals in the trials both in healthy or challenge-based protocols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress has been implicated in the pathogenesis of a number of diseases including neurodegenerative disorders, cancer, ischemia, etc. Alzheimer’s disease (AD) is histopathologically characterized by the presence of extracellular senile plaque (SP), predominantly consisting of fibrillar amyloid-peptide (Aβ), intracellular neurofibrillary tangles (NFTs), composed of hyperphosphorylated tau protein, and cell loss in the selected regions of the brain. However, the pathogenesis of AD remains largely unknown, but a number of hypothesis were proposed for AD mechanisms, which include: the amyloid cascade, excitotoxicity, oxidative stress and inflammation hypothesis, and all of them are based, to some extent on the role of A. Accumulated evidence indicates that the increased levels of ROS may act as important mediators of synaptic loss and eventually promote formation of neurofibrillary tangles and senile plaques. Therefore a vicious circle between ROS and Aaccumulation may accelerate progression of AD. For these reasons, growing attention has focused on oxidative mechanism of Atoxicity as well as the search for novel neuroprotective agents. A strategy to prevent the oxidative stress in neurons may be the use of chemopreventive agents as inducers of antioxidant and phase 2 enzymes. Sulforaphane (SF), derived from corresponding glucoraphanin, glucosinolate found in abundance in cruciferous vegetables, has recently gained attention as a potential neuroprotective compound inducer of antioxidant phase 2 enzymes. Consistent with this evidence, the study is aimed at identifying the SF ability to prevent and counteract the oxidative damage inducted by oligomers of Aβ (1-42) in terms of impairment in the intracellular redox state and cellular death in differentiated human neuroblastoma and microglia primary cultures. In addition we will evaluated the mechanism underlying the SF neuroprotection activity.